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CHAPTER 1
- INTRODUCT ION

The State of California's Air Pollution Emergency PTaa outlines
actions to be taken when air pollution levels reach or are expected to
reach specified episode Tevels. The emergency actions include protective
measures (such as health warnings) as well as preventive measures (such as
Tndustrial emission abatement programs). '

Since the episode concentration levels (see Table 1.1) imply the pro-
bable existence of health-threatening conditfons, it is highly desirable
to predict these episodes in advance, so that protective and/or preventive
action can be taken with sufficient lead time. The expense, disruption,
and credibility of these protective/preventive actions requires a minimi-
Zation of false-alarm rate. Thus, there is a need for accurate air quality
forecasting in support of the Air Pollution Emergency Plan.

Under contract to the California Air Resources Board (ARB), Technology
Service Corporation has developed improved prediction techniques in the
South Coast Air Basin (SCAB) for three specific pollutants: oxidants, sul-
fates, and sulfur dioxide.

1.1 OBJECTIVES OF THE PROJECT

While the primary objective of this research is to develop improved
prediction algorithms for specified sites in the SCAB, other preliminary
requirements were necessary. These are summarized below:

(1) Review the Existing State-of-the-Art S

An extensive literature review of prediction methods was
undertaken, including both meteorological and pollutant relationships. Fur-
ther, existing methods for predicting pollutant Tevels in the SCAB were
reviewed, including objective and subjective methods by both the ARB and
the South Coast Air Quality Management District (AQMD), and stagnation ad-
visory criteria used by the National Weather Service Forecast 0ffice in Los
Angeles (WSFO).

(2) Development of Verification Methods e

In order to establish a baseline accuracy of existing predic-




Table 1.1 Appropriate ARB Episode Criteria

Air Averaging Episode Criteria
Contaminant Time o
tagell Stage 2 Stage 3

Photochemical
Oxidant
(including Ozone) 1 Hour 0.20 ppm 0.35 ppm 0.50 ppm
Sulfur 1 Hour 0.50 ppm 1.00 ppm 2.00 ppm
Dioxide :

24 Hours 0.20 ppm 0.70 ppm 0.90 ppm
Oxidant, in ‘
Combination with 1 Hour 0.20 ppm 0.35 ppm 0.50 ppm
Sulfur Dioxide* -

24 Hours 25 ug/rn3
Sulfate, in (Sulfate) -
Combination with- ‘ -
Oxidant

1 Hour 0.20 ppm

(Oxidant)z

* Both oxidant and sulfur dioxide must be greater than 0.10 ppm.
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~*ABSTRACT

This s the Final Report of a project to develop improved prediction
algoritims for oXTdants, sulfates, and sulfur dioxide in the South Coast
Air Basin (SCAB), The main objectives of the study included: (1) a com-
prehensive survey of eXisting prediction methods, (2) a review of existing
pollution prediction methods used by the Air Resources Board (ARB), the
South Coast Air Quality Management District (AQMD), and the National
Weather Service Forecast Office in Los Angeles (WSFO), (3) the development
of a method to evaluate and verify prediction algorithms, (4) the compila-
tion of 1974-1977 aerometric data (with 1974-1976 to be used as a dependant
data set, and 1977 to be used as an independant test set), and (5) the
development of new prediction algorithms for same-day and day-in-advance
application.

A Phase I report, completed in October 1977, described the existing
state-of-the art and presented a method for evaluating prediction techni-
ques. The current report summarizes the earlier effort and presents the
results and verification of newly developed algorithms. For each of the
three specified pollutants, key prediction sites were determined. Al-
gorithms were developed separately for each of these sites and then related

to the remaining SCAB sites by means of linear regression. Thus it is
possible to predict the level of a specific pollutant at each SCAB site
currently measuring it.

The major findings of the study are as follows: (1) the new algori-
thms have substantially improved the capability for same-day predictions,
and to a lesser degree for day-in-advance prediction; (2) the statistical
relationships between meteorology and pollutant concentrations degrade
rapidly as the lead-time increases, such that historical data are in-
effective for 30-hour predictions; (3) the use of numerical prognostic
charts (LFM progs) have improved day-in-advance prediction methods: and
(4) for S0, the tnclusion of emission factors does not appreciably im- -
prove prediction accuracies over those obtained from meteorological data
alone.



tion metﬁods, an evaluation technique was developed to incorporate four
major aspects of pollution prediction:

(a) episode category accuracy

(b) quantitative accuracy

(c) significant change accuracy

(d) reduction of episode false alarms while increasing

episode probability of detection -
Baseline accuracies were determined for Upland and Downtown Los Angeles,
from which future algorithms could be compared.
(3) Compilation of Data Bases

An extensive data base comprising surface and upper air
meteorological variables over a four-state region, site specific pollutant
concentrations, and power plant sulfur dioxide emissions were compiled for
the 1974 through 1976 period. In all, over 350 potential predictor vari-
ables were assembled. For independent data testing, selected subsets of
these vartables for the 1977 yeér were also collected.

. (4) Development of Improved Prediction Aldorithms

Specifically, algorithms were to be developed for key sites
in the SCAB and for definitive prediction lead times. For oxidant and sul-
fur dioxide predictions, lead times of 4-10 hours (same-day) and 24-30 hours
(day-in-advance) were required. For sulfates, a lead time of 24-hours was
necessary. Key sites selected included: (1) oxidant: Upland, Downtown
Los Angeles, La Habra, Riverside, and Newhall; (2) sulfates: Anaheim, Azusa,
Riverside, Reseda, Temple City, and Upland; and (3) sulfur dioxide: Lennox
and Fontana. In addition, prediction equations were to be developed relat-
ing the oxidant and sulfur dioxide key sites to the remaining SCAB locations
currently monitored on the ARB telemetry system (see Figure 1.1).

1.2 SUMMARY OF RESULTS e
Based on the research effort conducted in this project, the following
is a summary of the principal results:
# Same-Day Prediction

Significant improvement was made over existing best-availabie
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prediction algorithms for oxidant. For each of the five key sites, im-
provement occurred on both the dependent and independent data sets. In-
terestingly, the most successful algorithms for Upland, Riverside, Newhall,
and La Habra were developed interactively (i.e., human expertise madifying
computerized statistical analyses), These methods provided the greatest
resolution in predicting both high and low pollution values. The follow-
ing paragraphs 1ist some of the statistical techniques applied and the pro-
bable reason for not performing as well as the interactive methods.

(1) Linear regression (stepwise): Produced a "best fit"
of the data, but underpredicted the high concentrations, thus reducing the
potential for accurately predicting the most severe situations: Applica-
tions of weighted regression (placing emphasis on the high end) produced a
s1ightly better fit at the high end, but over-predicted moderate and Tow
values, thereby increasing the standard error over a non-weighted regression.

(2) Pattern recognition - (AID program): The major diffi-
culty was that only discrete values can be predicted, as opposed to a "con-
tinuous" prediction function. The other problem is that the scatter in
each prediction terminal node was sufficiently large to significantly im-
pair the verification. Additionally, test sets applied to the AID trees
showed that only a small percentage of the variance (25 to 30%) could
actually be explained through such techniques.

(3) AID + Regression: Provided 1ittle additional reduction
of variance. We applied these two ways: (1) to form an AID tree and apply
linear regression to the data in the most significant terminal nodes, and
(2) to perform regression and then apply AID to the residuals. In both
situations, the combined effects increased the explained variance approxi-

‘mately 2-5% over the best individual method. Also, the added complexity as
a usable product did not seem appropriate for the very small improvement
obtained.

(4) Nearest Neighbor: Did not provide the resolution ne-
cessary to be a meaningful prediction method. The possible combinations of
meteorological conditions producing similar oxidant Tevels is quite large.
Thus, there was a considerable spread of observed values under matching




meteorological conditions. Results indicated that this method yielded pre-
diction values which approximated ¢limatological values.

(5) Time Series: Proyided reduction over persistence of the
mean absolute error, but did not successfully predict high concentrations
or significant change conditions. One might categorize the Box-Jenkins
approach as "enhanced persistence," in that overall results are better than
persistence, but it suffers from the same time-lag problems as persistence.
Applications to both pollutant values and key meteorological variables
failed to yield substantive improvement over other methods.

For 502 prediction, persistence is a good technique to use. With
rather complicated combinations of meteorological parameters, new algorithms
were developed which substantially improved over persistence, thereby pro-
viding the ARB with SO2 predictive capability not previously available.
Further a case-study involving daily 502 emissions from major power plant
point sources near Long Beach, indicated that the addition of such data
did not appreciably improve predictive capabilities over those obtained
from meteorological data alone.

e Day-in-Advance Prediction

For all three pollutants, prediction algorithms improved over
existing m§thods, but to a lesser degree than for same-day methods. For
sulfate prediction, original ARB equations verified quite well. Thus,
rather than initiating new algerithms, modifications were made to the exist-
ing equations to account for systematic errors. For three critical sites
(Upland, Riverside and Reseda), modifications significantly improved pre-
dictive capabilities.

Developing algorithms for oxidant prediction was more complex.
In general, the use of statistical techniques to relate meteorological con-
ditions to oxidant concentrations was effective within a short time period.
However, as the desired lead time increased, the statistical relationships
became less pronounced, such that the use of historical data to predict
oxidant levels 30 hours in advance was not effective. The principal reason,
obviously, can be attributed to a variety of dynamic changes taking place
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in the atmosphere from one day to the next. In essence, given some initial
set of conditions, the end product of oxidant levels on the following day
can be quite varied. It is our opinion that 24-hour prediction is the max-
imum Tead time in which historical data can be utilized successfully. Be-
yond that time period, the degradation in the statistical relationships re-
duces the end product to approximately persistence and climatology.
Predictive data availabile from numerical forecasts (progs) issued
daily by.the National Meteorological Center (NMC) were used for 30-hour

day-in-advance pollution prediction. From the Limited Fine Mesh (LFM)

prog package, regression equations relating oxidant to predicted 500 mb
height values were developed. These prediction equations ("perfect prog")
provided better results, in some instances, than the best 24-hour statis-
tical algorithms using historical data. For the first time, therefore, NMC
output can be used in objective methods to predict site specific pollution
levels.

1.3 ORGANIZATION OF THE REPORT

. This report is organized into 8 Chapters. This Chapter provides an
introduction and background. Chapter 2 highlights the results of the Phase
I report, such that the final report can be used as a stand-alone document.
Chapters 3, 4, and 5 describe the algorithms developmental procedures, and
verification scores for oxidant, sulfate, and sulfur dioxide, respectively.
Methods for estimating missing data are contained in Chapter 6, while
Chapter 7 describes a procedure for correcting algorithm output for long-
term pollution trend changes. The references are listed in Chapter 8.
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CHAPTER 2
REVIEW OF PHASE I

The Phase I report, completed in October 1977, included a compre-
hensive review of previous and existing predictive capabilities, an
evaluation of those methods, and a description of the available data
base. This chapter is intended to briefly summarize the highlights of
that report in order to provide a sufficient background leading to the
‘results of this research effort. If more detailed background information
js desired, the reader is referred to that report (Zeldin and Cassmassi,
1977). Also, parameter abbreviations, not explained in the text, can
be found in Appendix A. ‘

2.1 HISTORICAL BACKGROUND

Much of the work to date on oxidant forecasting has been most
re]evant to the shorter forecasts. Three basic types of approaches
have been attempted for making predictions on the short-term scale:
time series, multiple regression, and pattern recognition. For.an
introduction to the field, the reader is encouraged to refer to the
printed transcript of the Conference on Forecasting Air PoTlut10n held
in Berkeley in 1974 (D. R. Brillinger and E. L. 3cott, 1975).

Time series predictions have been studied by McCollister and Wilson
(1975), Box and Tiao (1975), and Chock, Levitt, and Terrell (1975).
Using univariate time series, the objective is to predict future values
based on just the previous values of the time series.

Some results of the work by McCollister and Wilson indicate that
time series prediction does a bit better than persistence (that the
future mimics the past exactly) and even a bit better than predictions
made by trained meteorologists using both meteorological and pollutant
data. All three of the methods, however, have fairly large average
errors--in the 35-50% range--perhaps too large for actual health warning
or short-term emissions control usage.



LSS

o P =y

PTEC e

Chock, Levitt and Terrell (1975) have applied both univariate and
multivariate time series techniques to weekTy-average, daily-maximum
oxidant data. The results pertained to long-term prediction, using .
previous years' oxidant data, and could be improved by using oxidant
data up to the week to be predicted. Little predictive information
was found in week-old meteorological data, as might be expected from
weather forecasting experience (Altshuller, 1975).

Linear multiple regression involves finding the linear combination
of predictor variables, X35 which best forecasts.oxidant levels,

0X = ag + ziaixi +e

in which %ge @g»... are constants to be discovered and € 15 an error term.
Chock, Levitt and Terrell (1975) have applied multiple regression

to predict weekly averages of oxidant daily maxima from concurrent weekly

average weather parameters, first using a regression analysis to screen

out the best subset of independent predictors. Tiao, Phadke and Box,

(1975) used a logarithmic regression model on data from Los Angeles to

derive a forecasting relationship for daily maximum hourly oxidant based
on the previous day's oxidant value, the month of the year, 4 AM. NO2
level, 4 A.M. inversion base height and its square, the difference be-
tween the inversion breaking temperature and the 4 A.M. surface temper-
ature, and the average 1-4 A.M. wind speed.

Others using regression models include Breiman and Meisel (1976)
and Bruntz, Cleveland, Kleiner, and Warner (1974).

There is no a priori reason to suppose that the relationship of
oxidant to meteorological and pollutant predictors should be best fitted
by any particular mathematical form. Methods employing formal pattern
recognition have been studied, but to-date, no major predictive effort
has been developed. In order to accomplish some of the objectives,
two basic ideas are involved. First, out of the very large set of
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possible predictors, a smaller number of significant features must be
selected, the aim being to find those which singly or in combination

can best be used to forecast future oxidant levels. The next task is

to find an optimal forecasting method 1inking these features to oxidant
values. Multivariate piecewise linear regression could be used to approx-
jmate global nonlinearities in the "real" feature-oxidant relatienship,
yet still give continuous predictions. If prediction into categories is
desired--for example, whether a given day will or will not exceed a par-
ticular oxidant standard--then many pattern classification methods are
available.

McCutchan and Schroeder (1973), used discriminant analysis (a linear
pattern recognition technique) to classify meteorological patterns in
Southern California with high accuracy. They noted that certain patterns
corresponded to high oxidant values.

An example of an approach that is in the spirit of pattern recogni-
tion, but does not use its formal mathematical methodology, is the obJec-
tive ozone forecast system developed by- Davidson (1974) at the Los Angeles
Air Pollution Control District (LAAPCD) to predict the occurrence of days
‘from July through October with ozone levels equal to or greater than 0.35
ppm. Details of this procedure are given in the Phase I report.

Real-time sulfate prediction has been pioneered in California and
more specifically in the SCAB. Prediction methods have been restricted
to either regression analysis or meteorological pattern recognition.

In general, sulfate forecasting has been performed by the ARB and the

AQMD through the prediction methods described by the California ARB (1976)

and Zeldin et al. (1976). Subseguent models, while not specifically designed
for prediction, have related sulfate levels to meteorolegical, air quality or
emissions factors. Such work has been done by Cass (1975, 1976), White (1977),
and Environmental Research and Technology (1977).

A review of recent literature failed to yield any meaningful infor-
mation concerning ambient SO2 prediction. Most efforts pertain to 802
point source dispersion models, rather than area-wide conditions. Three
examples of current 502 models worth noting are by Shir and Shieh (1973),
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Goumans and Clarenburg (1975), and Gibson and Peters (1977). Each model
attempted simulation of 502 concentrations for specified areas based upon
emissions data and meteorological data. Although these models are not
applicable to daily forecast procedures, they do express the progress
that has been made in SO, modeling capabilities. '

2.2 REVIEW OF EXISTING PREDICTION METHODS

The prediction of oxidants in the SCAB is routinely performed by the |
ARB and the South Coast Air Quality Management District (SCAQMD). (The
National Weather Service [NWS] routinely predicts pollution potential based
on meteorolegical criteria.) Basic techniques employ the use of regression
analysis, point classification systems and air stagnation advisories. This
section presents a limited summary of the existing predictive capabilities
for oxidants as well as existing sulfate and SO2 forecast algorithms.

ARB Procedures: Oxidants

Daily oxidant forecasts for each of the 19 statewide locations

. cqr%ent1y active on the ARB telemetry system are made by the ARB meteor-

ology section. Predictions are initially issued at approximately 2 P.M.
to be valid for the following day (Kinney, 1977). The initial prediction
is updated on the morning of the valid date to add potential prediction
resolution. One of the most significant oxidant forecasts for the Los
Angeles air basin is Upland's one~hour max concentration.

A prediction equation for the Upland maximum hourly average is used
to objectively determine the predicted concentration. Based on multiple
regression techniques, the equation includes both meteorological and air
quality data:

0Xx = 0.36A + 0.50B - 0.59C + 0.51D + 0.53E + 9.28 (2-1)

where
0X = predicted Upland maximum hourly average for tomorrow
A = today's Upland maximum hourly average between 0600-1400 PST

— T T =
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1]

San Diego 500 mb height change 12z* today - 127 yesterday

temperature of LAX Inversion top from morning RAOB** (132)
temperature of 850 mb level at LAX from afternoon RAOB (19Z)
temperature of LAX Inversion top from afternoon RAQOB (19Z)

m o O W
il

In the sense that all input into the equation is based on in-hand
data, the method is completely objective. The meteorologist, however,
still may subjectively change the prediction derived from the equation,
if conditions warrant (Kinney, 1974; CARB, 1975). The values for the
remainder of the stations are entirely subjectively determined. However,
since, in most cases, the Upland concentration represents the expected
basin-wide maximum, the need for objective prediction guidance is not as
critical for the other Tocations.

A same-day update equation is used again for the Upland station.

Two distinct equations have been established: one for weekdays (Tuesday
through Saturday), and another for Sunday and Monday. The primary dif-
ference between the two is that Equation (2-2) relies more heavily on
the NO2 concentrations, whereas Equation (2-3) depends more heavily on
meteorological parameters:

Sunday-Monday

0X = 0.44A + 0.66B + 0.72C + 0.34D + 1.4 (2-2)

Tuesday-Saturday

0X = 0.42A + 1.04B + 0.21C + 0.75D - 1.4 (2-3)
where
0X = predicted Upland maximum hourly average for that day
A = Upland's maximum hourly average on the previous day
B = San Diego 500 mb height change 127 today-12Z yesterday
C = downtown L.A. 0600 - 0900 PST NO2 maximum hourly average
D = temperature of 850 mb level at LAX from morning RAOB (13Z)

*F T refers to Greenwich Meantime (GMT), which is 8 hours earlier than
Pacific Standard Time (PST).

#* RAOB is an abbreviation for Rawinsonde QObservation, which is a Tow-Tlevel
vertical atomspheric sounding.
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It should be noted that, in developing these equations, high oxidant
day data were input twice to force the equations to be more responsive to
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high oxidant prediction days. As a result, low-to-moderate oxidant days

would tend to be overpredicted.
As in the case of the one-day prediction, results from the equations

are used as a guide toward the issuance of a subjectively produced pre-
diction, issued at approximately 10 A.M.

ARB Procedures: Sulfates

Sulfate prediction, which was initiated in June 1976 due to the ARB's

promulgation of sulfate-oxidant episode criteria on May 28, 1976, was
developed initially for Temple City (CARB, 1976). Using a screening
technique, the ARB was able to filter out a majority of days in which
meteorological conditions were not conducive to increased sulfate con-
centrations. The filter was defined as:

SOZ < 20 ug/m° if

(1) 850 mb temperature anomaly <0, or
(2) Inversion base height <700.feet or >3300 ft, or
(3) Inversion magnitude (AT) <-7°C

From the remaining data, multiple stepwise regression techniques
were employed to derive an equation predicting 24-hour sulfate concen-
trations:

TEM (B)’ZO(C)‘IE
where STEM = Sylfate concentration at Temple City (ug/m3)
A = previous day's sulfate concentration

at Temple City (ug/m3)
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B = EMT visibility at 23Z (miles)

C = LAX visibility at 23Z (miles)

D = LAX 20Z inversion base height
(hundreds of feet)

= LAX 20Z 1000 mb dewpoint (°C)

and E

The results of this work indicate that high. sulfate concentrations
are related to low visibility, moderately deep and strong inversions, and
the availability of moisture. The effect of persistence is quite notice-
“able, indicative of sequential sulfate build-up.

With the 1977 expansion of daily sulfate sampling to six SCAB sites
(Temple City, Azusa, Anaheim, Reseda, Upland, and Riverside), the ARB
pursued additional prediction equations for those locations. And with
a need for earlier decision-making, visibility input data were changed
from 237 to 22Z. For each of the six generated equations, a screening
process was employed, in the same manner as the 1976 effort. Results
of the prediction filter are Tisted in Table 2.1.

From the remaining data, multiple stepwise regression yielded the
following equations:

[.49 lnA1 - .18 ¢nB - .18 anC + .22 lnD] + .23 ZnE] + 0.84] (2-5)
Stem = ¢©

[.49 A, - .18 anB - .18 nC + .22 SE,nD-l + .23 lnE] +0.84] (2-6)
S =g
AZU

(.23 wnAg - .21 2nB - .32 2nC - .19 2nD, + .06 2nE, * 3.10] (2-7)
SANA =8 .

[.45 2nA, - .08 0B - .17 anC - .50 2nDy + .57 Eq - 1.271 (2-8)
Spes < @ |

[.10 i?.nﬁ\-l - .48 2n8 - .23 anC + .29 E.nA6 + .46 lnE3 + 2.13]1 (2-9)

SypL = ©
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.17 g¢nB - .16 gnC + .27 anD

TEM = Sulfate concentration

A7U Sulfate concentration

RES = Sulfate concentration
upL = Su]fate concentration
RIR © Sulfate concentration

A1 = Previous day's
A2 = Previous day's
= Previous day's
= Previous day's

= Previous day's

S
S
SANA = Sulfate concentration
S
S
S

sulfate
sulfate
sulfate
sulfate
sulfate
sulfate

= EMT 22Z visibility
= LAX 22Z visibility

As
Ay
A5 = Previous day's
Ag
B
C

1

+ .03 2nE

3

+1.08] (4-10)

at Temple City (ug/m3)

at Azusa

at Anaheim

at Reseda

at Upland

at Riverside
concentration
concentration
concentration
concentration
concentration
concentration

E1 = LAX 20Z 1000 mb dewpoint
E2 = LAX 20Z 850 mb temperature anomaly

Eq = AP(LAX -TRM), 227

E, = LAX 20Z 850 mb temperature

at
at
at
at
at
at

n
1
n
1

Temple City
Azusa
Anaheim
Reseda
Upland
Riverside

= LAX 20Z inversion base (hundreds of feet)
= L0OS 227 SO2 concentration

These equations are currently in use by the ARB meteorology section.
Predictions are issued by 3:00 P.M.
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Table 2.1 Sulfate Prediction Filter

Sulfate predicted <2 ug/m3 if any of the following conditions

exist.

Location Criteria
Temple City1 (1) LAX 207 Inversion base <700 Teet
Azusa (2) LAX 20Z Inversion base >3500 feet
Anaheim ‘ (3) LAX 207 Inversion magnitude (AT) <7°C
Reseda (5°C in Winter, Azusa all year)
’ (4) LAX 20Z 850 mb Temperature_Anomély <0°C
(5) AP(LAX-TRM), 22Z <0 mS
Riverside (1) LAX 20Z Inversion base <700 feet
Upland } (2) LAX 20Z Inversion base >4500 feet
(3) LAX 207 Inversion magnitude (AT) <4°C
(4) AP(LAX-TRM), 22Z <0 mb
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SCAQMD Procedures: Oxidants

Starting in April 1976, all basin-wide oxidant forecasts were
issued as one forecast by the combined four-county meteorological staff
of the SCAQMD centralized at E1 Monte. Daily sulfate forecasts were
initiated in May 1977 following the adoption of a revised Regulation VII
incorporating sulfates into the list of episode criteria.

The AQMD provides pollution forecasts 7 days a week during the smog
season (approximately May through October ) and 6 days per week during'
the remaining months. In reality, there is a forecast issued for every
day of the year, however, during the non-smog season, the off day is
covered by a 2-day prediction issued on the preceding work day
(Keith, 1977).

For each datly prediction, the forecaster subjectively predicts the
expected LAX inversion conditions for the following morning. Based on
this prediction, three elements are completed: _

(1) An objective forecast prediction model (Figure 2.1) for

the San Bernardino maximum oxidant potential (baéed on
a point classification system)

(2) An objective forecast prediction model (Figure 2.1)

Los Angeles County maximum oxidant potential (based on
multiple Tinear regression)

(3) A daily computer forecast worksheet

Using one of the in-house mini-computers, a pre-programmed forecast
package is used. The forecaster inputs data from the daily computer
forecast worksheet via teletype and the computer determines the entire
forecast values by station. After examining the output, the forecaster
can program any element change which he subjectively determines. The
computer outputs the resultant forecast in the exact format necessary
for dissemination (prior to 11 A.M.), including source-receptor locations,

if applicable. An example of final computer output is presented in
Figure 2.2.
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' DAILY AIR POLLUTION FORECAST

FORECAST issued By For
: time date forecaster day date
BASZAE TOP MAG 850-37C 950mb 2h HR SUM 157 SUM
TNy £t _ft °g °c °c mb mb
STARTLITY] 900mb! TNV GRADIENT{ DAY MONTH TOT_AL
o
VERIFPTCATION
BASE TOP SFC 950mb | 850 mb IV _BASE INV TOP
LAX £t £y c °¢c ¢ °¢ °
EMT £t £ °c g e ¢ ¢
MAG 850-3%7¢C 157 GRAD
STABILITY 950 NV GRAD DAY HMONTH TOTAL
EQ
I-Ming FORECAST liodel
VARTARLE CONSTANT MONTHLY ADJUSTMENT VALUZES
(1850) % x__ .0193 Jan -5.5  Jul 0.2
7900 x 21156 Feb =2, Auz 0,0
T950 x » 205 Mar 0.0 Sen 0.7
T1000 X - .5639 Aor 1.9 Qct -0.9
¥onthlvy Adi X L.0 Havy 6.2 lNov =li.2
Factor | 8.8 [z 1.0 5.0 Jun 2.1 Dec ~5.lt
- TOTAL PPIM
VERIFICATION Model
VARTAZTT i CONSTANT MORTELY ADJUSTMLET VALUES
(T820)2 x  .01h2 Jen -5.9 Jul 0.5
T1CO0 X = .303 reb -lL.3 Aug 0.0
Max O LASB X .29 Mar -0.6 Sen 0.3
H500, VG < L0190 Anr 1.2 Cer =2.9
AP LAX-DAG X = L Hay 1.0 Aov =~5.0
dP Say-LA3 » -1.090 Jun 2.5 Dec =YF.L
ar LAN-LAS X L0595
dP LA =WJx x - G52
Monthlv &di x 1.0
Factor -$7.1 |x 1.0 -97.1
TOTAL PPEH |

Figure 2.1

Example of AQMD

Objective Prediction Models
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SOUTH COAST AIR OUALITY MANAGEMENT DISTPICT
.DAILY AIR POLLUTION FOFECAST
VALID: THURSDAY,» JUNE 23 » 1977

INVERSION BASE: 1860 FT )
INVERSION BREAKING: NO
INVERPSION BPEAKING TEMP: 98 DEG F
MAX MIXING HEIGHT: 2588 FT
AVEPAGE WIND SPEED FOR DOLA: 4.0 MPH , _
SKY CONDITION: NITE AND MORNING STRATUS/FOG.FAIR AND WAPM AFTERNOON.
RAIN: NO
OPEN FIRES: YES
S+ CeAcBe AGPICULTURAL BURN FORECAST: PERMISSIVE-BUPN DAY

. # AREA 03 EPI ‘co VSBY TEMP
1 CENT .16 ) 5 5 79
2 NVCO «08 - 5 6 72
3 swco -85 o 5 6 72
4  SOCO «35 ] S 6 72
S SOEA .14 ] 5 5 .79
6 WSFV_ - <17 g 5 3 86
7 ESFV .21 1 S 3 86

"8  WSGV .23 1 5 3 86
9 . ESGY «26 1 5. 3. 86

18 PWVA .21 . 1 5 3 88

11 8SGV .21 1. 5 3 86

12 | SCLA « @S o 5 6 72

13 UsCP + 16 g 5 3 86

ia ANVA e 12 8 - 5 19 99
. PREDICTED DURATION: 1288 - 1628 PST

16 LAHB .15 a 5 S . 79

16  SACN .16 8 S 5 ‘88

17 ANaH o1l . 8- 5 . 6 72

17 LSAL « 39 8 ] 6 72

18 COST «@5 2 s 6 12

19 TORO - 28 ] 5 5 - 19

28 LGNA +85 @ 5 6 72

2] sJCA «@5 2 5 6 72

22 PPRPK .17 ] 5 3 908

23 RIVR .22 1. S 4 93

24 PERI ©18 8 5 4 93

25 ELSN .16 @ 5 a 93

26 TEME «13 8 S 4 94

28 HEME = 12 2 5 A 94

29 ~ BAWN .16 8 5 - 6 - 87

3¢ PLEP .18 g 5 6 188

38. 1INDO e l4 8 5 8 168

32 UPLA 26 1 5 3 88

33 CHIN «19 ) S 3 9@

34  FONT «26 i S a 92

34  SNSD «18 S - a 94

35 REDL «17 a 5 4 94

35 YUCI - 17 8 5 4 .92

37 LXGR - 21 -1 5 ? B2

38 BGEE = .11 8 s 16 77

39 vCvL 011 8 5 10 99

&8  BAPRS .08 ¢ S 12 99

PREDICTED Dunarxon- 1486 - 1888  PST

Figure 2.2 Example of AQMD Computer Forecast Final Output
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Prediction Techniques

The AQMD has three oxidant prediction aids, as mentioned previously.
The method for each will be discussed here.

Objective System for San Bernardino

Ozone prediction for the eastern valley areas of the South Coast
Air Basin (east of Pomona) is based on the premise that primary ozone
precursors originate in the populous Los Angeles-Orange County metro-
politan areas in the morning hours and are then transported northward
and eastward. The photochemical processes continue during the daytime

seabreeze transport, reaching the eastern Basin areas with peak ozone
values late in the afternoon. Therefore, the ozone prediction model
examines the meteorological potential for the buildup of contaminants
in the morning plus the potential for transport during the day.

A point classification system is used to relate the given meteoro-
Togical parameters to the expected peak ozone for San Bernardino. Points
are assigned on a 0 to 10 scale with the more adverse conditions at the
high end (see Table 2.2). The classification categories are defined as
foliows:

(1) Stability (°C) = (T85Omb - Tsfc) + (Tt - Tb)

where Tt = temperature of the inversion top, and Tb =
temperature of the inversion case.

{2) 958 mb Temperature (°C)

(3) Inversion Base Height (Ft MSL)

(4) Gradient {mb) = (Pl—PZ) + (P3-P4) + (P5-P6)

where
P1 = Long Beach (LGB) sea level pressure
P, = Daggett (DAG) sea level pressure
P3 = San Diego (SAN) sea level pressure
Py = Las Vegas (LAS) sea Tevel pressure
P. = Norton AFB (SBD) sea level pressure
and PG = George AFB (VCV) sea level pressure

(5) Day of the week
(6) Month of the year
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Table 2.2 Point Classification-System for
Ozone Prediction Model

Points *  Stability 950 Temp. Inversion Gradient Day Month
. : < -10.0
" 0 < 5.0 <50 5,000+ )
: , .9.0to0 - 9.9 o
i 5.1- 7.0 5.1- 8.0 | 4,001-5,000 . Sunday - Feb.” .-12
' +16.0 to +19.9
g . -8.0to - 89 .
2 7.1- 9.0 8.1-11.0 3,001 - 4,000 Mar. -9
| +12.0 to +15.9
1 , - 7.0t0 - 7.9 Monday )
) 3 9.1-11.0 | 11.1-14.0 | 2501-3000 | ngf\se‘?;\;y Apr. 5
ﬁ ' +10.0 to +11.9 Sarurday
- 2001-2,500 | - 6.0t - 6.9 May 0
i 4 |11.1-130 | 14.1-170 |- . ' Thursday
' Surface + 80to+ 9.9
r | _ - 5.0to- 5.9 June +1
"5 |131-150 | 17.1-20.0 | 1,501-2,000
) + 6.0to+ 7.9
| - - 4010 - 4.9 duly -+ 2
6 |15.1-17.0 | 20.1-240 | 1,001-1,500 ' - Friday
) ‘ + 40to+ 5.9
Aug. + 2
] 7 | 17.1-190 | 24.1-280 701-1,000 | + 20to+ 3.9
' Sep.. *+.1
""" o - 30to - 3.9
8 | 19.1-210 | 28.1-32.0 501- 700 | , .
. ‘ 4+ 1.0to+ 1.9 Oct. 8
| ' ‘ - 20to - 2.9
9 | 211-230 | 32.1-360 301- 500
0.0to+ 0.9 ‘Nov. -11
-
L ~ 10 > 23.1 > 36.1 150- '300 | - 1910 - 0.1 |
Dec. -i9
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The first three catégories are based on data obtained from the morn-
ing Los Angeles International Airport (LAX) sounding, taken daily at
approximately 1430 GMT. The pressure gradients, (4), are obtained from
the 1500 GMT surface observations. In addition, two categories (day of
the week and month of the year) complete the model for additive equiv-
alency to the expected maximum hourly average.

This system is used in two ways. Predicted jnversion and pressure
gradient datd are used to compute a value for the following day. Ina
sense, this results in subjective information inserted into an objective
model. Results, therefore can only be expected to be as good as the
subjective capability of the forecaster. In the second approach, same-
day data are used to produce a completely objective same-day prediction
(with approximately 6 to 12 hours Tead-time).

Objective System for Los Angeles County

Using multiple regression techniques, a model was developed for pre-
dicting the daily maximum hourly average in Los Angeles County. - The model
was generated using 1974-1975 meteorological and oxidant data. Preliminary
‘results yielded two equations:

Day-in-advance:

0X = - +
: 0.67 T1 + 0.36 T2 + 0.35 T3 + 0.23 T4 + 0.35 T5 +D+ M+ 6.2

Same day:

0X = - - - ‘

0.36 T1 + 0.66 T3 + 0.25 X1 G.56 P1 0.81 P, + D+ M+ 11.2

where:

T1 = 1000 millibar (mb) temperature (°C)

T2 = 900 mb temperature (°C)

T3 = 850 mb temperature (°C)

T4 = Inversion base temperature (°C)

Tg = Inversion top temperature (°C)

X1 = Maximum hourly 0X average on the previous day (PPHM)

P1 = Los Angeles to Palmdale pressure gradient (mb)

P2 = Long Bea;h to Daggett pressure gradient (mb)

D = Constant term for day-of-the-week

and M = Constant term for month-of-the-year
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It should be noted that the day-in-advance equation requires subjec-
tively derived input. As in the objective system described in the previous
subsection, this approach is not a truly objective prediction method. The
same-day equation, however, does use only available data, and is therefore
completely objective.

Results from these equations, when used on 1976 data, shewed weaknesses
in predicting oxidant concentrations 2 .30 ppm:‘ In fact, the model never

predicted above .30 bpm. Therefore,'fhe set of equations was revised
using 1973-1976 data as the dependent data set (since both 1973 and 1976

contained a greater number of days > .30 ppm than 1974 and 1975). Results
of multiple Tlinear regression yielded a new set of equations, which is
given in the lower half of Figure 2.1.

Computer Prediction Mode]

Similar to the objective methods previously described, the AQMD com-
puter prediction model (CPM) is based upon subjectively determined meteoro-
logical information. However, unlike the other methods, the CPM is able to
detect meteorological inferences which can affect not only the concentra-

- tion levels but also the distribution pattern. For example, both the

San Bernardino and Los Angeles models yield a numerical value predicting
a maximum hourly average. Equivalent model values can be obtained under
a variety of meteorological conditions. The CPM, while using both models
as a guide to concentration levels, is able to adjust the distribution
pattern based on the meteorological differences.

Also, the logic of the CPM was developed to improve the known weak-
nessess of the objective models. Under certain meteorological conditions,
the San Bernardino model is better than the Los Angeles model, and at other
times, the opposite is true. The CPM essentially weights the prediction
according to the method which is most favorable. The CPM tailors the
oxidant forecast base upon the contributions of differing meteorological
variables ( for example inversion strength and the direction and strength
of the pressure gradients).
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1t should be noted that the CPM has a manual override function in
which the forecaster can subjectively change any one or more predicted
values. Additionally, the forecaster can change the designated routing
(i.e., northern route to southern route) and receive a re-computed fore-

cast distribution. There are other forecast values for carbon monoxide,
temperature, and visibility; however, the details of these features

are'beyond the scope of this study.

SCAQMD Procedures: Sulfates

Similar to the ARB, the AQMD developed a sulfate prediction capa-
bility in mid-1976. But unlike the ARB which used both air quality and
meteorological data, the AQMD devised a two-dimensional nomogram based
solely on inversion base height and strength (AT) (see Figure 2.3).

From this analysis, it can be seen that high sulfate days occur
within a large range of inversion heights from 600 feet to near 4500
feet, the most critical area being between 1200 feet and 2400 feet,
depending on the inversion intensity. Not unexpectedly, there is an
extremely strong relationship between the nomogram and the ARB filtering
-criteria.

Using the nomogram, AQMD meteorologists use the subjectively deter-
mined inversion base height and magnitude (as input to the oxidant pre-
diction) and determine a predicted sulfate value for the next day.

Because the input does not require any air quality persistence data,

such a prediction can be generated by 10 A.M. On the verifying day,

actual inversion data are used in the nomogram to (1) verify the original
meteorological prediction, and (2) update the sulfate forecast as necessary.
Data for verification are routinely available by 9:00 A.M.

It should be noted that the nomogram does not represent a site-specific
prediction. Rather, the prediction is indicative of a basin-wide maximum,
regardless of location.
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National Weather Service: All Pollutants

As of 1975 the Weather Service Forecast Office in Los Angeles
(WSFO-LA) has been issuing two major statements of possible high
polilution: Air Stagnation Advisories (ASA) and Special Dispersion
Statements (SDS). ASA or SDS statements are issged when it is deter-
mined that meteorological conditions are conducive to the build-up of
pollutant concentrations. An example of the criteria to determine the
ASA-SDS is given in Table 2.3.

2.3 EXISTING VERIFICATION METHODS

Evaluation Methods--Oxidant

In establishing a baseline performance for existing oxidant predic-
tion methods it is necessary to consider the various important features
of prediction. Some pertinent questions considered were:

(1) How well do we predict episodes?

(2) How close do we come to predicting actual concentrations?

(3) How well are we able to predict those days in which
significant changes occur (e.g., large deviations
from persistence)?

(4) How well can we predict stage 2 episodes?

(5) What are the tradeoffs in making too many stage 2
predictions in order to catch all the episode days?
(In other words, at what point does a high false alarm
rate degrade the credibility of the product?)

To answer these questions, two primary analyses were conducted:
(1) episode prediction analysis, and (2) quantitative prediction analysis.
To test episode level prediction accuracy, a “prediction contingency
table" was constructed. A sample output is shown in Table 2.4. Number
of occurrences for each predicted and observed episode level were tabu-
lated. Correct predictions are indicated in the diagonal of the matrix
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Table 2.3 ASA Guide and Warning List

Check‘NMC stagnqtion chart.

From LAX & EMT AM soundings, note existence o;F:

a)

b)

d)

Strong inversion, (8-10 degrees C or more).

Steep slope, (15 MB or less from top to bottom of inve}sion) and
mechanism for maintaining steep slope (usually cutoff high at

850 MB and 700 MB over Nevada with winds over Southern California
NE to at times SE above the inversion).

Base of inversion AM 1500 ft or lower and to be maintained near
this height or lower during the day by continued subsidence aloft.
High 500 MB heights with thermal trough in evidence but not
necessarily well developed.

Temperature greater thaﬁ 25 degrees C at top of inversion (3500
ft or lower), summer months.

LAX PM sounding, continued low inversion, 800 ft or less. EMT PM
sounding 1ow.inversion and as low as or lower than AM sounding.

with mixing heights 1500 ft or less.

High point totals from objective systems.

a) San Bernardino: 25-30 marginal, greater than 30, yes. (Uncorrected)

b) Davidson: greater than .35 (may be low when SBD system is high and

vice versa)

Subjective weight given to-.special factors as outlined in sections 4.2

and especially 5.1 of Chapter C-30, Air Pollution Weather Forecasts,

Operations Manual.
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represented by equivalent episode predictions and observations. Also
tabulated were the false-alarms, fail-to-alarms, and prediction accuracies
Tabulated figures indicate both the number of occurrences (upper number)
and the fractional amount of the total.

For an evaluation of concentration prediction accuracy, a tabular
listing was devised by stratifying observed values according to incre-
ments of 5 pphm. For each designated class interval, the following param-
eters were computed:

(1) Ni: the number of observations per class interval

(2) the mean observed value

(3) the mean of the corresponding predicted values

(4) the mean absolute error:

Z |predicted value - observed vé]ugL

N;

(5) the number of predictions (and the fractional amount
of Ni) that were +2 pphm of the observed values.
Similar tabulations made for %5, 8, £10, %15 pphm.

A sample of the layout is shown in Table 2.5.

Evaluation Criteria

Using the "raw" evaluation data including the episode prediction
analysis and the quantitative prediction analysis, a more comprehensive
evaluation criteria was determined. Analyses were first stratified by
season: May through October, and November through April. This tech-
nique allcwed for a meaningful assessment of smeg=-seasonal prediction
without undue tnfluence from the persistent low values occuring in
the winter. On the other hand, the rare high-oxidant occurrences in
winter can be separated from the routine summertime occurrences, such
that specific analyses can be made for these off season events.

With the data separated into seasons a more definitive evaluation
was performed using a series of individual criteria assessments. The
significance of each individual criterion is given in the following brief
summary. The cumulative resu]t_is a standardized evaluation methodology.
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1. Episode Prediction Accuracy

One method to evaluate prediction capability is to examine the
ability to correctly predict episode levels regardless of the specific
concentration (e.g., a prediction of 0.20 ppm is considered a stage 1
"hit" even if the observed value was 0.34 ppm, or a "miss" if the ob-
served value was 0.10 ppm).

2. Quantitative Prediction Accuracy

While accurate episode prediction is a desirable goal, the ability to
accurately predict pollutant concentration is a more formidable assess-
ment of prediction capability. Several methods of analysis are possible:
(1) compare the mean absolute errors of the different models; (2) examine
the distribution of predicted values in light of the mean of the observed
classes; (3) determine the percentage of predictions +2 pphm of the ob-
served values (a numerical list is defined as +2 pphm of the observed
value).

3. Significant Change Analysis

A key factor in determining the skill of a pollutant prediction method
is to analyze the results of those days in which significant changes oc-

" curred from one day to the next (i.e., persistence is ineffective). To
accomplish this, analyses were performed, to determine the number of pre-

dictions within 2 pphm on days when significant changes of > 10 pphm in
in ozone concentrations occurred.

4, Stage-2 Episode Prediction Analysis

The ability to accurately predict stage-2 episode days is highly
desirable. Obviously, it is advantageous to correctly predict all
stage-2 days. Such days require significant abatement strategies to be
implemented. On the other hand, too many false-alarm situations (i.e.,
causing abatement strategies to be implemented when in reality conditions
did not prove to be that adverse) could degrade the credibility of the
product, such that large-scale cooperation in implementing strategies
could be severely limited. The best method would achieve an optimum
condition which would gain the greatest public credibility and acceptance.
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In regard to specific stage-2 oxidant prediction, one can argue that
predictions can be made dbjectively-—without the external influences
caused by a stage-2 prediction. However, past experience has demonstrated
a tendency to be cautious with respect to such predictions. Days onwhich
a truly unbiased prediction would have resulted in a 35 pphm prediction,
may in reality have been-issued as 34 pphm. In other words, "if the con-
dition is marginal, do not predict it."

~ Realizing, then, that the optimum situation is to keep the false-
alarm rate at a minimum while attempting to increase the correct stage-2
predictions (i.e., increasing the probability of detection) a two-dimensional
scoring system was developed to evaluate existing Stage-2 prediction capa-
bilities. (See Figure 2.4). The system was weighted toward crediting
those methods which kept a low false-alarm rate. Conversely, a high
false-alarm rate was penalized more than a Jow probability of detection.
1t should be_noted that several evaluation methods were attempted,
including "skill score" based on the equation:

-

where

skill score

total number correct predictions
total number of predictions

1}

m — 0o W
]

expected number correct due to change

The major difficulty in using +his method of evaluation was the
indifference between false-alarm and fail-to-alarm situations. Because
of the potential economic impact and loss of public credibility in false-
alarm situations, it became necessary to develop an evaluation method
which penalized excessive false alarms approximately twice that of fail-
to-alarms. Figure 2.4 thus represents a heuristically determined scoring
system designed to credit low false-alarm rates. Scoring values were
assigned to the isopleths to assist in the numerical evaluation of pre-
diction methods and to allow for reasonable jmprovement of effort in
Phase II.
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5. OQverall Baseline Prediction Evaluation

We have presented four significant considerations for evaluating pre-
diction capabilities. 7o reflect a total prediction capability, an over-
all one-dimensional prediction rating method was devised using the
equation:

RATING = TC - 10ﬁ + T2 +C+P

TC = the percentage of correct episode predictions
£ = the mean absolute error

T2 = the percent of predictions that were within *#2 pphm of
observed values (an assessment of quantitative accuracy)

C = the percent of predictions that were within +2 pphm of
observed values on days in which observed values changed
at least 10 pphm from one day to the next (an assessment

. of prediction capability in significant change situtations)

P = the Stage-2 prediction evaluation score from Figure 2.4

An example of an overall baseline evaluation is given in Table 2.6
From the numerical scores it can be seen that the best existing predic-
tion method for Upland is the ARB same day subjective forecast.

2.4 EVALUATION METHODS --SULFATES

Similar methods used in the baseline performance evalution of oxidant
prediction were employed to evaluate the sulfate prediction capability:

(1) the ability to predict episodes

(2) the ability to predict quantitative levels

(3) the tradeoffs between false-alarm and fail-to-alarm conditions.
(Significant change conditions will not be evaluated for sulfates because
the number of samples in the generated subset is too small for valid con-

clusions.)
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Table 2.6 Overall Prediction Rating for
Upland--1974-1976 (May-0Oct)

Number of ' _ .
Predictions Method To-10E+ T+ L + P = 0Overall Rating
PERFECT 100 - 0 + 100 + 100 + 100 = 400
(460) A. Climatology 59 - 67 + 22+ 17+ 25 = 56
(454) B. 1-Day Persistence 67 - 57 + 28+ 17+ 25 = 63"
(452) C. 2-Day Persistence 55 - 76+ 16+ 0+ 0= -5
(434) D. AQMD 1-Day
Objective 68 - 56+ 30+ 14+ 25 = 8]
(460) E. AQMD Same Day
Objective 74 - 45 + 35+ 24 + 26 =114
(460) F. AQMD 1-Day .
Subjective 68 - 57 + 28+ 12+ 34 = 85
(451) G. ARB 1-Day
Subjective 68 - 54 + 29+ 17 + 21 = 81
(452) H. ARB Same Day
Subjective 74 - 46 + 37 + 34 + 39 = 138
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Since sulfate prediction began in mid-1976, only the June through
October period of 1976 has been evaluated in this analysis. Data were
evaluated using both the episode contingency tables and stratified quan-
titative error analysis formats as used in the oxidant evaluation.
Verification intervals were changed in the contingency tables to reflect
episode Tevels of » 25 g/m"..

Evaluation of Results

Incorporating the major aspects of prediction capabilities, a one-
dimensional rating system was developed to compare the prediction methods.
The overall rating was based on the equation:

RATING = Tc - 10E + T2 + P

where )
TC = the percentage of correct episode predictions
E = the mean absolute error .
T2 = the percént of predictions that were within 22
ug/m3 of observed values
P = the episode prediction evaluation score from Figure 2.5.

Sample results are shown in Table 2.7.

It is worth noting that since the ARB equation utilizes an initial
£ilter to screen out low potential sulfate days, it was not possible to
evaluate the guantitative accuracy of the filtered days. Thus, the
quantitative analysis includes only those days for which numerical values
were predicted. (A11 days were included in the episode prediction evalu-
ation, since filtered days represented non-episode forecasts). As a
result, quantitative analysis produced a limited subset of days for which
predicted values were made. In comparing E (the mean absolute error) and
T2 (% within 2 ug/m3), a disproportionate sample existed between persis-
tence and the ARB equation. Persistence included all low days; the ARB
equation included only high sulfate potential days. A quantitative com-
parison wculd therefore tend to bias the results in favor of persistence.
To remedy the inconsistency, only those class intervals >15 ug/m3 were
used for the persistence computations of E and T2. Using this procedure,
the comparisons shown in Table 2.7 represent the best estimates between
persistence and the ARB equations.
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Table 2.7 Overall Sulfate Prediction Rating (1976)

Number of .
Predictions Method

Perfect

TEMPLE CITY
B.
c.

~ [} oW
I i} 1]

Ié_- 1I0E+ T

100 - 0 + 100 + 100

94 - 50 + 28 + &4

92 - 60 + 23 + 3
95 - 34 + 50 + 53
88 - 62 + 15 + 20
87 - 76 + 18 + 12
91 - 53 + 26 + 28

1-Day Persistence
2-Day Persistence

ARB Equation

il

) + P = Overall Rating

300

126
58
164

61
41
92
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Normalized Prediction Evaluation

The prediction rating procedures as given in Tables 2.6 and 2.7
allow for a gquantitative one-dimensional evaluation of existing predic-
tion capabiiities. By normalizing with respect to the "perfect" predic-
tion, we can compare all one-day-in-advance prediction methods to a
baseline standard, e.g., l-day persistence. In essence, we can measure
the ability to beat 1-day persistence using the equation:

M-P
S = +g-
where
S = score (comparable ability)
M = method rating (from Tables 2.6 or 2.7)
P, = l-day persistence rating (from Tables 2.6 or2.7 )
PR = "Perfect" rating (from Tables 2.6 or 2.7)

An example of the normalized prediction evaluation is given by Table 2.8.
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Table 2.8 Comparability of Day-in-Advance Prediction

% Perfect Method 1-Day Comparable

Contaminant Locatioﬁ Method Rating Rating - Persistence = Ability
(PR) (PR) - (PR)
0X Upland D 400 .202 - 157 = +.045
0X Upland F 400 212 - .156 = +.055
0X Upland G 400 202 - 157 = +.045
0X DOLA F 325 .335 - .461 = -.126
0X DOLA G 325 .455 - .461 = -,006
S0, upland L 300 .306 - .203 = +.103
50, Temple L 300 847 - 820 = +.127
City
*D = AQMD Obj.
F = AQMD Subj.
G = ARB Subj.
L = ARB Eg.
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2.5 DATA BASE

Dependent Data Set 1974-1976

In order to develop pollution prediction algorithms a data base
including approximately 400 air quality and meteorological variables
for the 3-year period (1974-1976) was created. The air quality data
base was comprised of ozone, 502, su}fate, N02, and total hydrocarbon
data. (Records of air quality data prior to 1974 are of somewhat doubt-
ful value for the purpose of short-term forecasting because of possible
trend changes and in some cases changes in monitoring technology stand-
ards.) Meteorological variables included historical surface data and
historical upper air data.

The bulk of the air quality-meteorological data base was assembled
in a digitized form and input into the computer using a seven character

alphanumeric code. The coding system was developed for convenience and
flexibility allowing for easy ménipu]ation of potential predictors. A
complete 1ist of all dependent data set variables is presented along with
the descriptive code in Appendix A.

Air quality data from 39 stations (shown in Figures 2.6 - 2.8) and
basin-wide pollution maxima in the South Coast Basin for differing
pollutants were assembled. Included were selected averages of pollutant
concentrations for the different time periods, 8-11 A.M., 6-9 A.M.,

10 A.M. - 10 A.M. (24 hour average) and 12 A.M. - 12 A.M. (24 hour
average), dependent upon the pollutant and the monitoring station.
SO2 emissions data from the Haynes and Los Alamitos power plants were
also input into the data base.

Meteorological data for (1974 - 1976) were selected as a part of
comprehensive network of variahles directly and indirectly associated with
Tocal pollution phencmena. Historical surface data for 20 stations
(shown in Figure 2.9) included such variables as wind direction and
speed, surface temperature, visibility, pressure and temperature
gradients (also 24 hour changes) and dewpoints. These variables
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were extracted for various valid times 4 AMM., 7 AM., 1 P.M., 4 P.M,,
and 10 P.M.

Historical upper air data were assembled for 10 stations located
throughout the western U,S. (see Figure 2.9.) Variables were taken from
these upper air stations at four different levels 950 mb, 850 mb, 700 mb
and 500 mb and included temperature, height, 24 hour height change, wind
direction and speed, relative hum1d1ty, and temperature anomalies.
(Variables were not extracted for all Tevels or at every station.) Local
inversiaon (RAOB) variables were valid at 14Z and 20Z while other stations
data were valid at 12Z and 00Z.

Independent Data Set - 1977

The independent 1977 data set was constructed using variables se-
lected by the various final prediction algorithms. Air quality variables
included ozone, 502’ and sulfates, monitored at the selected key stations.
Meteorological variables included a combination of local and distant sur-
face and upper air data. Progostic data in the form of NWS numerical sim-
ulation model output (LFM 24-hour 500 mb heights and height differences)
were also a part of the data base.

Data assembled for 1977 were used for the independent verification
analysis of the newly developed forecast algorithms. The completeness of
the independent data set relied heavily upon the availability of the
1977 data.



J—— [SEEE s comiy e = T

47

CHAPTER 3
OXIDANT PREDICTION TECHNIQUES

3.1 GENERAL METHODOLOGICAL OVERVIEW

3.1.1 Selection of Key Predictor Sites

During the research period, there were 38 sites in the South Coast Air o
Basin‘which measured oxidants (ozone). To develop site specific equations
for each location would have required a substantial statistical effort; but
more importantly, individual algorithms may have resulted in regional pre-
diction inconsistencies which could only be attributed to the underiying
algorithm. Such results would have necessitated corrections by subjective
evaluations of the ocutput data. Therefore it was agreed upon at the out-
set of the project, that algorithms be developed for five key sites (in the
SCAB), each encountering maximal oxidant under a different meteorological

pattern. Remaining stations can then be related to these five sites by
regression techniques.

The five sites selected (as shown in Figure 3.1) are as follows:

(1) Downtown Los Angeles (DOLA) - a metropolitan area in which pol-
Tution is carried inland by the seabreeze. Very specific meteorological
conditions are necessary to cause high oxidant levels at this site.

(2) Upland (UPLA) - a foothill receptor site which has experienced
some of the highest oxidant levels in the SCAB over the last several years.
Predictions for UPLA represent a reasonable potential for basin-maximum
concentrations.

(3) La Habra (LAHB) - a northern Orange County site which experiences
high oxidant Tevels when meteorological conditions favor stagnant conditions
in the Orange County-Los Angeles County major metropolitan source areas.
Like DOLA, on most days, the seabreeze advects the pollution farther inland,
thus resulting in more persistent Tow concentrations. '

(4) Riverside (RIVR) - an inland receptor site which is affected by
transport through the Santa Ana Canyon. When offshore flow forces the major
pollution cloud to a more southerly transport trajectory, Riverside can
experience some of the highest concentrations in the SCAB., Generally, it
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can be stated that UPLA represents the maximum potential for "northern route
transport (along the foothills), while RIVR represents the maximum potential
for the "southern route".

(8) Newhall (NEWH) - a receptor site in the hills north of the San
Fernando Valley which experiences high oxidant levels when reinforced
southerly flow (i.e., eddy circulation) exists over Southern California.

In situations with a deepening of the marine layer taking place, NEWH can
experience the highest oxidant levels in the SCAB, .

Since the effects for each of these locations represent distinct
meteorological scenarios, it was expected that the relationships (similarities
and differences) among these sites would provide enough resolution for pre-
dicting values at other SCAB locations. Regression equations were generated
for each of the remaining 33 sites, with observed values for the five key
sites as independent variables. Separate equations were generated for both
summer (May-Oct) and winter (Nov-Apr) periods, however, the resulting -
equations were in close-enough agreement to warrant using only one set of
equations for the entire year. A list of equations (based on the summer
data) is presented in Table 3.7.

o The resulting equations appear to be physically meaningful, in the
sense that each station explained the most variance under a specific
group of meteorological effects and transport patterns. Shown in

“Figures 3.2 to 3.6 are the grouped stations which had the most significant

relationship to a particular key site. For each of the five groups, the
station with the second most significant influence is shown by a letter
immediately adjacent to the monitoring site.

Statistical correlations among stations revealed that the highest
correlations occurred geographically between Pasadena and Riverside - the
area of the greatest oxidant impact. Figure 3.7 depicts isopleths of
correlation coefficient values over the SCAB. The occurrence of high
correlations in high oxidant areas, and lower correlations along the coast
(in low oxidant areas) resulted in a low standard error of estimate among
all stations (approximately 1.5 to 3.0 pphm).



Table 3.1 Prediction

STATION
ANAHEIM

AZUSA

BIG BEAR
BURBANK

CHINO

COSTA MESA

EL. TORO

FONTANA

HEMET

LAGUNA BEACH
LAKE ELSINORE
LAKE GREGORY
LENNOX

LONG BEACH

LOS ALAMITOS
LYNYOOD

MT. LEE

PASADENA

PERRIS

POMONA .

PRADO PARK
REDLANDS

RESEDA

RIVERSIDE MAGNOLIA
SAN BERNARDINO
SAN JUAN CAPISTRANO
SANTA AMA CANYON
TEMECULA

TEMPLE CITY:
WEST LOS AMGELES
WHITTIER

YUCAIPA

)
R 2
 odnoa

ANAH
AZUS
BGBE
BURK
CHIN
cost
TORO

- FONT
HEME .

LGNA
ELSH
LKGR
LEXN
LONB
LSAL
LYND
MTLE
PASD
PERT
POMA
PRPK
REDL
RESD
RIVM
SHBD
SJCA
SACN
TEME
TEMC
WEST
WHTR
yucI

number of cases

-
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Equations for SCAB Sites as Functions of the Five Key Sites

0.34
0.61
6.22
0.65
0.47
0.26
0.50
0.65
0.28
0.23
0.40
0.41
0.36
0.20
0.35
0.41
0.82
0.42
0.51

0.50
0.55

2.57
0.46
0.78
0.50
0.28
0.62
0.24
0.53
0.64
0.51
0.58

= correlation coefficient

EQUATION
LAHB + 0.30 DOLA +

UPLA + 0.39 DOLA +
RIVR + 0.09 NEMH -
DOLA + 0.26 HEWH +
RIVR + 0.25 LAHB +
LAHB + 0.18 DOLA -
LAHB + 0.12 RIVR +
UPLA + 0.35 RIVR -
RIVR + 0.10 NEWH +
LAHB + 0.18 DOLA -
RIVR + 0.15 UPLA +
NEUR + 0;34 UPLA -
DOLA - 0.09 UPLA +
DOLA + 0.09 LAHB +
LAHB + 0.26 DOLA +
DOLA - 0.08 HENH +
DOLA + 0.19 NEWH +
UPLA + 0,53 DOLA +
RIVR + 0.25 HEUH +

UPLA + 0.34 RIVR -
RIVR + 0.27 LAHB +

RIVR + 0.26 UPLA +
NEWH + 0.34 DOLA +
RIVR + 0.08

RIVR + 0.40 UPLA -
LAHB + 0.13 DOLA +
LAHB + 0.36 RIVR +
RIVR + 0.10 LAHB +
UPLA + 0.58 DOLA -
DOLA - 0.08 UPLA +
LAHB + 0.38 DOLA +
RIVR + 0.28 HEWH +

percent of variance expiained

SE s standard error of regression

0.50

0.09

0.08 LAHB + 2.63
0.16 UPLA + 0.14
0.23 UPLA + 0.49
0.09 RIVR + 2.46
1.39

0.43

2.14

0.08 RIVR + 2.88
2.25

0.19 DOLA + 2.25
2.29

1.23

1.58

0.10 LAHB + 1.76
0.08

0.42

1.56

0.46
1.35

0.44
0.23 RIVR + 0.26

0.37
2.51
0.23
2.94
2.12
2.16
0.42
0.80

N R RZ se.
802 0.85 0.72 2.12
835 0.95 0.90 2.47
364 0.70 0.49  1.85
835 0.91 0.83 2.72
872 0.94 0.89 2.43
766 0.62 0.39 2.36
805 0.85 0.72 2.35
842 0.95 0.90 2.88
864 0.76 0.58 2.28
219 0.7 0.50 2.04
689 0.87 0.75 2.49
524 0.77 0.59 3.58
828 0.57 0.33 2.00
828 0.64 0.41 1.82
802 0.81 0.66 2.33
803 0.72 0.52 2,31
252 0.85 0.72 3.19
835 0.94 0.88 2.51
860 0.90 0.81 2.52
828 0.96 0.92 2.20
841 0.93 0.86 2.27
879 0.94 0.89 2.37
835 0.93 0.86 2.38
871 0.96 0.91 1.83
874 0.94 0.88 2.7
758 0.63 0.40 2.80
571 0.90 0.82 2.64
781 0.77 0.60 2.95
503 0.95 0.90 2.43
828 0.81 0.61 2.09
884 0.85 0.72 3.00
489 0.92 0.84 2.50
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3.1.2 Description of Statistical Techniques Employed

To obtain the greatest predictive capability, many statistical tech-
niques were used, including:
e stepwise multiple linear regression
automatic pattern recognition ("AID")
scatterplot analysis
time series
nearest neighbor
combinations of the above techniques
interactive analysis
The following paragraphs summarize the methodology involved in each

of these techniques:

¢ Stepwise Multiple Regression.

Stepwise multiple linear regression is a statistical process where a
dependent variable is fit against a series of predictors having different
potential weights,forming a regression equation. If xq, X2se00, Xy are N
proposed predictive variables, then stepwise multiple regression analysis
attempts to find which of these variables, say X5 X35 Xgs and Xgs best
predict the dependent variable y and to find the optimal prediction

equation, say
y = Hlxy, x3, Xg, xg]

where H is a Tinear function and the variables are the best linear predic-
tors,

The resulting regression equation is a "best fit" of the predictors
to the dependent variables. One of the advantages of using stepwise re-
gression is that a definitive set of optimal predictors is formed and
that the order of significance is clearly stated. The prediction model
that results from the analysis will perform with a respectable amount of
accuracy; however, the "best fit" approach frequently underpredicts the

high concentrations. Applications of weighted regression (placing emphasis
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on the high end) can produce a slightly better fit at the high end but will
overpredict moderate and Tow values, thereby increasing the standard error
over a non-weighted regression. Problems are also encountered when non-
linearly related variables are entered into the set of predictors producing
an unrealistic predictor-predictant relationship.

® Automatic Pattern Recognition

An alternative prediction method involves the use of automatic pattern
recognition, “AID", to determine pollution decision-trees. The principie
behind AID is to categorize a daily poliution level according to meteoroicg-
jcal criteria. This is accomplished through the splitting of a selected set
of meteorological parameters (each of which are classified in discrete in-
tervals) by maximizing the sum of the squares between the meteorological
classes. The AID computer program, developed at the Institute for Social
Research, University of Michigan, acts to maximize the sum of the squares:

RSSy = RSSg - RSSw

where RSSq: residual sum of the squares for all cases
RSS,: residual sum of the squares within each
meteorological class
RSSp: residual sum of the squares between meteorotogical
classes

by dividing the set of pollutant concentrations into two meteorological
regimes.
The Togic of AID is briefly explained below:
Look at any one independent variable, say the jth, having values
X]s...sXp With corresponding y values yi,...,¥yn. The RSSy before any
splitting is defined as

n
RSSq = 2; (Yj - y)Z-
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The residual sum of squares for the two groups is

RSSp = L (y5-¥)
Yjsq

RSSZ = Z (.VJ = YZ)Z.
¥je82 :

As shown in Appendix E, the decrease in RSS due to the §p1it is
ARSS = 0y (77)2 + 1,(7,)2 - n(3)2.

Consider all partitions of yj,...,y, into two groups, and define the
optimal split as that partitioning which maximizes ARSS.

(1) Pick the variable having the largest ARSS, and split the
y-values into the two subgroups Gy, Gp, corresponding to this maximum
ARSS. o

(2) Repeat (1) on each of the two groups Gy and Go.
Keep repeating the process as long as either:

o & value of ARSS exceeds some preset lower bound, or

¢ The number of elements of a subgroup falls above some present bound.

Results of this method produce a decision-tree, such as the example
in Figure 3.8. The AID program was applied to one-day oxidant predic-
tion for Upland, California. The resulting tree defines the most
significant meteorological predictor variables, the variable split points,
the number, mean, and standard deviations for each tree node, and the
identification and rank importance of each terminal node.

e Scatterplot Analysis

Scatterplots were used as prediction aids for two reasons: to present
a visual account of the pollutant distribution versus one or two dependent
variables and to determine if certain values of an independent variable
could be used to isolate regions of similar dependent variable values.
Figure 3.9 shows a sample scatterplot for today's oxidant distribution at
Upland versus the Vandenberg 500 mb height (12Z).
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This technique can Be used as follows: .

(1) 1Identify a region, X] < Xgs such that similar conditions of the

dependent variable exist.

(2) For X1 > Xq» plot the remaining values of Y against variabie X,.

(3) Repeat this process until no further reduction for Y is possible.

e Time Series Analysis _

The use of a time series model involves the prediction of a future
event based solely upon pasf occurrences of that event. In pollution
prediction, time series represents a modified form of persistence - expanding
upon persistence by its examination of the recent trend and the general mean
of the pollutant forecast. The time series model will overpredict if the
immediate observed trend is towards lower concentrations and will reverse
jtself in the opposite case. The time series can be described as a forecast

based upon an observed sequence of a pollutant's concentrations.
A sample representation of a time series equation is shown for a
cne-day forecast of the DOLA-oxidant, where:

-

Yiep = 1.53yg - 0.53y¢.y - 0.94E¢ (3.1)
and Ee = ¥ - 1.93y, 1 + 0'53yt-2 + 0'94Et-] (3.2)

Given the past occurrences of Ye¢, Ye_ise--+Yt-n @ series of residuals
Exs E¢.7..--Et-n can be determined. To forecast yi4 (tomorrow's DOLA
_Qxidaﬁt) tﬁe pred?EETon is &épeﬁ&ent upob today's yalue Yi andr¥he effects
of the DOLA oxidant for the past three days - determined by the residuals.
In a sense, the residuals damp the forecast, consistently suppressing
large scale rapid changes.
s Nearest Neighbor

The nearest neighbor method defines pollution prediction by determining
(or "matching") a set of days having meteorological conditions most similar
to the conditions occurring at the time the prediction is to be made and

then averaging the "matched" pollutant concentrations to form a predicted
value.
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The basic concept of the nearest neighbor prediction is to represent

previous oxidant values (y), and the most current meteorological variables
(xn) in vector form where:

X = (¥5 X{s X2, X35...X3) is today's vector and
xF = (y*, X%, xo*, X3%,....X3%) is the vector for-days
having similar conditions, m = 1...n.

The nearest neighbor technique determines the vector distance

4’ (X, i%) = d (X, §1*), d (%, iz*)...d (X, i;) between today's vector
(previous oxidant and meteorological conditions) and the vectors of other
days. Once the set of days having the smallest differences (most similar
conditions) to today's vector are determined, an oxidant prediction can
be made, based upon the oxidant values observed on those days. This is
accomplished by calculating the average oxidant value of the set of
nearest neighbors. Also determined are the range of oxidant values in-
cluding the max, min and median values of 0X in the nearest neighbor set.

For this analysis the five nearest neighbors were determined for
oxidant prediction. The mean, the median and the maximum oxidant values
were each examined as potential oxidant predictors.

Another approach for nearest neighbor techniques involves regression.
To find the predicted value for a specified case, the k nearest neighbors
(the cases whose values of the independent variables are closest) are
chosen and then the k values of the dependent variable are either
averaged or fit to a linear regression equation. Both the average and
the Tinear nearest neighbor estimator methods weight the closer neighbors
more heavily than those more distant. Analyses for several values of k
can be done at one time. For each analysis the root mean square (RMS) error
of prediction is calculated and is used to compare the two estimators and

to aid in selecting a suitable value of k for either estimator. The RMS
error is also useful to compare these estimators with the estimates from a

linear fit over the whole region.
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The three estimators can be defined as follows:
(1) Linear estimator
Let Y denote a dependent variable and X1, ces X denote the
independent variables. Let X]i""’ Y1 be the va]ues of the variables
Xl""’xl’ Y for the ith case. Choose a, b], . b to solve the Jeast
squares equations that correspond to minimizing the sum of squares

2
12(\(1. =@ = byXy; = ee = byKod) (3.3)
Let le s Xy p denote the values of the independent variables
X1, . X correspond1ng to the predicted case. The linear estimator

of the regress1on function of Y evaluated at the predicted case is
defined and computed as

~

a+ b]x1p ...t bixzp ) (3.4)

(2) Weighted average nearest neighbor estimator

Let Y denote a dependent variable and et k be the number of
nearest neighbors to be used. For 1 <1 < k, set w
(k+1)2 '2 and let Y be the value of the dependent variable Y for the
case corresponding to the ith smallest distance to the predicted case.
The K weighted average nearest neighbor estimator of the regression
function of Y evaluated at the predicted case is defined and computed as

k
> H

i
i=1

(3.5)

e

o
1]
—
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(3) Weighted linear nearest neighbor estimator

Let Y denote a dependent variable, let Xy,...,X, denote the
independent variables and let k be the number of nearest neighbors to
be used. For 1 <1 <k, set Wy = (k#1)Z - i% and Tet Xyys...s Xgys ¥; be
the values of the variables X],..., Xz’ Y for the case correipogding
to the ith smallest distance to the predicted case. Choose a, b1,..., bz
to solve the least squares equations that correspond to minimizing the -
weighted sum of squares

k

2 .
DMy - a - byXyy - - bK )T (3.6)
i=1

Let X1p,..., Xp denote the values of the independent variables

1;...,Xz, corresponding to the predicted case. The k weighted 1inear
nearest neighbor estimator of the regression function of Y evaluated
at the predicted case is defined and computed as

a +bX, F..+bX . (3.7)

¢ Combination of the Above Technigues

With numerous statistical techniques available, several options were
open to determine the most effective prediction algorithm. One of these
options was to combine di1fferent techniques.

The use of AID and stepwise multiple linear regression was widely
used to determine the combined effects of linearly and non-linearly related
variables on a pollutant. Using AID, both types of variables are used to
separate pollutant concentrations into different categories. With the
different categories having discrete characteristics it can be advantageous
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to group several classes together and then perform regression analyses on
those groups to further clarify prediction resolution. The use of re-
gression added to AID also gives the algorithm a continuous prediction
capability.

AID was also used to examine the residuals of several regression
analyses to increase prediction resolution. Using the combined process,
only a small amount of additional variance in the pollutant distribution
was accumulated. - ' . '

¢ Interactive Analysis

Interactive analysis incorporated the use of personal expertise and
empirical data analysis. Several different procedures were attempted to
determine predictive algorithms. Of these, point classification systems
and unique combinations of key variables (obtained By classical methods)
were instrumental in the development of several predictive algorithms.

Point classification systems, similar to Zeldin and Thomas (1975)
assigned weights to differing values of selected variables to determine
optimal fits of predictor data to forecast pollutants. This can be
viewed as a special-case regression method.
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3.1.3 Exploratory Meteorological Analyses

Prior to performing statistical analyses between air quality and mete-
orological parameters, some preliminary analyses among meteorological para-
meters were accomplished in order to:

(1) determine the extent to which known key meteorological parameters

can be statistically predicted, and

(2) determine if upstream parameters are important as potential pre- -

dictors. .

Historically, it has been known that the inversion base height at LAX
is an important parameter in determining oxidant concentrations. Therefore
this parameter was selected as the predictand for exploratory analysis.
Stepwise regression techniques were employed, using pre-selected meteorolo-
gical predictor variables (six local and five upstream), under four strati-
fied conditions: (1) all cases, (2) May-October days, (3) May-October days
with inversion AT>3°C (significant inversion days), and (4) May-October
significant inversion days with non-surface inversions. Each of the cases
is a-subset of the preceding case. For comparéiive pukposes, case #3 was
repeated using the logs of the predictor variables and also eliminating
persistence as a predictor. Results are summarized in Table 3.2. It can
be seen that case #3 explained the most variance (60%), however, persistence
(LAXIBH4) was the key predictor variable, as was the case for all regressions
except when persistence was eliminated. Pressure gradients and pressure
gradient changes have a secondary importance in predicting inversion height.

Analyses of the prediction errors indicate that regression techniques
fail to adequately predict significant changes in the inversion base height.
This accounts for the rather large standard errors (i.e., 810 feet for the
best case), and also implies the strong persistency effects. For the pur-
poses of predicting high oxidant values (when meteorological changes are
critical) 30 hours in advance, it becomes apparent that best-fit techniques
may not provide sufficient resolution to achieve desired results.

Using the same predictor variables, a correlation matrix was generated
(see Table 3.3). As expected, local predictor variables are correlated to
each other, and most upstream predictors are correlated to each other. Look-
ing at the correlations for predicting tomorrow's inversion base height
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(LAXIBH, tomorrow), it is 1nterest1ng to note that three of the five
upstream predictors did show significant correlations, with SFORNO 7

(San Francisco-Reno pressure gradient) and OAK8TC2 (24-hour 850 mb tempera-
ture change at Oakland) being the most significant. While not as high as
some local predictor variables, these correlations did indicate that
upstream meteorological predictor variables may be useful in longer-range
oxidant prediction. ' ' '

3.1.4 Oxidant Correlations to Data Base Variables

As a preliminary analysis to determine sets of potential predictors,
linear correlation coefficients between every variable in the data base
and the oxidant values at each key station were calculated. Coefficients
for variables compared to same day oxidant and stratified by season are

given in Appendix B.
Although highly correlated variables may not have been selected for

fhe final set of predictors, they represented a logical starting point for

_predictor selection.
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3.2 SAME-DAY (6-HOUR) PREDICTIONS

Same-day predictions, which in an operational sense can be considered
as improved updates of previously issued forecasts, are based on morning
observations of meteorological and air quality data. Since the most sta-
tistically significant relationships would normally be expected on same-day
conditions, our initial efforts were focused on maximizing these results.
Final same-day prediction algorithms for the five key sites are presented
below. (Details of the chronclogical development of these algorithms are
given in the subsequent section.)

3.2.1 Fina]APrediction Algorithms

(1) UPLAND
0X = LAXS8TM4 + LAX8DIF +(UPLAZMY - LAX9TM4) (3.8)

where: LAX8TM4

I

LAX 850mb Temp (°C) 14z

LAX8DIF = Change in LAX 850mb Temp from 14Z yesterday
to today (ocC)

UPLAZMY = Upland max oxidant yesterday (PPHM)

LAX9TM4 = LAX 950 mb temp (°C) 14z

Note: (A) -7.5 < (UPLAZMY - LAX9TM4) < 7.5

(B) If LAX 950mb Temp from 14Z yesterday to 14Z
today (LAX9DIF) is:

(a) > 7.0, then OX1 = 1.1 (0X)
(b) <-7.0, then 0X; = 0.6 (0X)
(2) RIVERSIDE
0X = LAX8TM4 + (LAX8DIF + LAX9DIF) : (3.9)
where: LAX8TM4
LAX8DIF as defined for Upland
LAX9DIF

Note: (A) -10.0 5_(LAX8DIF + LAX9DIF) < 10.0
(B) For October - April:

ox, = QX+ RIVRZHY

1
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where RIVRZMY = Riverside max oxidant
yesterday (pphm)

(3) NEWHALL

0X = 0.35 (LAX8TM4) + 0.43 (NEWHZMY)

(3.10)
+ 0.46 (LAX3DIF) - 0.25 (LAX9DIF) + 1.48

. where: NEWHZMY = Newhall max oxidant yesterday (pphm)
. LAX8TMY

LAX8DIF as defined for Upland
LLAXSDIF

(4) DOWNTOWN LOS ANGELES - (decision tree - see Figure 3.10)

(5) LA HABRA - (point - score system - see Figure 3.11)
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CONDITION PREDICTION
LAX INVERSION| TODAYS DOLA SDB WIND, ] LAX INVERSION
TOP_TEWP. OX. MAX I DIRECTION || aukuer oR BASE (202) < 750 FT 23
(202) > 23°C > 17 PPEM| | (212) < 170° EARLIER -OR- WEEKEND ]
- — t 6
AY'S UPLA SDB WIND
l T°3x, MAX DIRECTION 22
> 25 PPHM (212)341°-100°
T 16
15
‘ 15
TODAY'S LAHB SDB WIND VBG 24-HR
X MAX DIRECTION 500 MB ?§§§§T> 4t 28
> 14 {212) > 300° CHANGE > 40m.
I ! 16
VBG 700 MB 15
R.H. (122)
<202
X PERSISTENCE
SDB WIND 15
DIRECTION
(217) < 130° LGB SFC '
TEMP {212) 15
———"1 > 85
PERSISTENCE
TODAY'S DOLA SAN-LAS AP VBG 700 MB LAX SFC
0X MAX (212) R.H. (122) TEMP (20Z) 16
> 8 PPHM < 7.0 mb < 40% > 24°C
L | ' ! PERSISTENCE
Figure 3.10 Decision-tree Prediction Algorithm for DOLA

(one day in advance). "Yes" condition proceeds
horizontally to the right; "No" condition
proceeds downward. Predicted values are in
PPHM.
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: [
Value LAXBTHA LAX8DIF LAXSDIF | LGBAVZ7 | SANLAS? LAXIBC3
-10 N/A
-9 < -10.0 N/A
-8 (see note 2)
.7 N/A
-6 (see note 2)
-5 < -8.0 < 8.0 >8.0 N/A .
8.0 to 6.1
-4 7.9 to 6.0 | < -8.0 -9.9 to -9.0 N/A
-3 5.9 t0 -4.0 < -7.0 6.0 to 4.1 N/A
-2 3.9 to -2.0 <-6.0 | >I5 4.0 to 3.1 N/A
] 3.0 to 2.1
-1 -1.9 to ~1.0 <-5.0 [ 14 to 10 }-3.9 to -8.0 N/A
o | <10.0 .0.9t0 0.0 [5.0t54 9 2.0 to 1.1 | (see note 2)
: : o} 1.0 to 0.1
T [ 10.1 o 12.0 0.1t 1.0 N/A 8 -7.9 to -7.0 N/A
2 [ 12.7 to 13.0 1.1 to 2.0 > 5.0 7 0.0to -0.9] N/A
3 -1.0 to =1.9
3} 131t 140 2.1 to 3.0 > 6.0 6 -6.9 to -6.0 N/A
\ ; -2.0 to -2.9
4 | 141 t15.0 | 3.1 t0 4.0 >7.0 5 -5.9t0-5.0] N/A
5 | 15.14016.0 © | 41to 5.0 > 8.0 4 -3.0 to -3.9}  N/A
§ | 16.1 to 18.0 5.1 to 6.0 > 9.0 3 -4.0 to -4.9 N/A
7 18.1 to 20.0 6.0 | >10.0 2 N/A
8 20.1 to 22.0 L N/A
9 22.1 to 24.0 4 WA
10 >24.0 N/A

where: LAX8TM4

LAXBDIF  as previcusly noted

LAX9DIF

LGBAVZ7 = LGB Visibility at 0700 PST (miles)

SANLAS7 = (SAN-LAS) surface pressure gradient at
0700 PST (mb)

LAXIBC3 = LAX morning inversion base height change from
yesterday to today (fest)

; LAX8DIF = 0 for July - October
If LGB@AVZ7 < 5 and LAXIBC3 > 0, then point score = -6
If LGBEVZ7 < 5 and LAXIBG3 > 1000, then point score
= -8 (For all other conditions, point contribution
of LAXIBC3 = Q)

Note: E;

Figure 3.11 Point - Score Predictive Algorithm for La Habra
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3.2.2 Chronological Development of Algorithms

The five key sites were studied as separate cases; however,
the information gained from certain analytical methods applied to one
site was used to prevent unnecessary repetitions on other sites. For
example, exploratory research using "nearest neighbor" techniques was
applied to DOLA. When it became apparent that the range of possible
values under similar meteorological conditions was too great to provide
sufficient prediction accuracy, these procedures were not applied to
other sites, although information regarding potential predictors was
retained for utilization in other methods. This feedback approach maxi-
mized efforts leading to the final algorithms.

DOWNTOWN LOS ANGELES - (DOLA)

Initial same-day prediction methods were focused on DOLA, due to
the critical nature of meteorological conditions necessary to produce
episode conditions. Since most days have values < 20 pphm, climatology
has been shown to be an effective predictor (see Phase I report). The
few episodes that occur each year (approximately 10/year) ére generally
non-persistent; hence the importance of an improved prediction method
can be more substantially evaluated by its ability to successfully pre-
dict episode days. Results of the initial regressions yielded the lar-
gest correlations when stratified by weekday/weekend with the weekend
equation providing the best fit ( r = 0.75, N = 152). The mean absolute
error of 2.7 pphm was better than any procedure evaluated in Phase I;
however, as typified by regression analyses, the equation was unable to
predict high values > 20 pphm. Under the most adverse meteorological
conditions of the dependent data set, the highest predicted value was
19 pphm. For the weekday data, results were slightly worse (r=0.70,
N = 361) with a mean absolute error of 3.0 pphm. Also, very poor accuracy
in predicting episode days was observed. Key predictor variables are given
in Table 3.4.

Next we applied the AID program to a 1ist of 21 potential predictors.
Even though 61% of the variance was explained, the decisicn tree did not
yield any categories which predicted > 20 pphm. The highest category,
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Table 3.4 Key Predictor Variables for DOLA
Same-Day Regression

Variable Hgggggx"Coefficient “'Variable Heekend Coefficient
LAXITT4 0.39 LAXITT4 0.18
LAX9TM4 0.25 LAX9TM4 0.25
LGB@VZ7 : -0.18 LGB@v27 -0.29
VBG5HC2 -0.13 - SANLAS7 -0.32
Constant -0.3 Constant +6.7

Where: LAXITT4 = LAX INVERSION TOP TEMP (°C) -14Z
LAX9TM4 = LAX 950 mb TEMP (°C) - 14Z
LGBgvz7 = LGB VISIBILITY (MILES) - 07 PST
SANLAS7 = (SAN - LAS) AP (mb) - 07 PST
VBGSHC2 = VGB 500 mb HEIGHT CHANGE (10 m) - 122
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-which predicted 18 pphm, involved the following criteria:

(1) SDB temperature at 07PST (SDBPTM7) > 55°F
(2) LAX 850 mb temp. at 14Z (LAX8TM4) > 20°C
(3) LAX inversion base height at 14Z (LAXIBH4) < 500 ft.

As will be shown in the subsequent section, results of the day-in-
advance AID algorithm for DOLA verified better than any of the same-day
methods. This phenomenon is not completely understood, although it is
apparent that the méteoro]ogica] conditions developing on the previous
afternoon are most important in relating to high oxidant conditions at
DOLA. Of the five key sites, DOLA is the only one which produced better
day-in-advance prediction accuracy than same-day accuracy. A description
of this algorithm is given in Section 3.3.

UPLAND - (UPLA)

As a starting point, 1inear regression methods were used. The most
significant resulting equation is as follows: '

UPLA = 0.66 (LAXSMP4) + 0.18 (DOLAN9@) + 0.32 (UPLAZMY)  (3.11)
- 0.45 (LAXOTM4Y) - 0.27 (SUMPPG7) + 0.29 (VBGSHTZ2) - 148.9
r=0.83 N = 451

Where:

LAX8MP4 = LAX (850 mb - sfc)TEMP at 14Z

DOLAN9® = DOLA 6-9 a.m. max hourly NO2

UPLAIMY = Yesterday's max oxidant at UPLA

LAX9TMAY = Yesterday's LAX 950 mb temp at 14Z

SUMPPG7 = Pressure gradients; |(SAN-LAS) + (LGB - DAG) +
(sBD-vCV) + 6] at 0700 PST :

VBGSHT2 = Vandenberg 500 mb height at 12Z (10's m)
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For verification statistics, this equation outperformed the existing
ARB same-day equations (which are stratified according to weekday/weekend).
For example, for the 1974 - 1976 period, the existing equations hit 54%
of all possible episodes, had a mean absolute error of 7.4 pphm, and a
total verification score of 46. (See Section 2.3 for a review of verifi-
cation methods.) The new equation correctly predicted 71% of all episodes,
had a mean absolute error of 4.8 pphm and a total verification score of
105. This, however, was still not as good as the existing AQMD objective
system, which scored 114. Also,. the new equation did not predict any
stage 2 condition (e.g., the maximum predicted value was 33 pphm) .

We next proceeded to diagnose the terms of the existing and new equa-
tions on a case-by-case basis to determine the conditions in which the equa-
tions do not perform well. One of more interesting features we observed was
that the DOLA 6-9 a.m. NO2 maximum hourly value, while important overall,
did not seem to correlate under the more severe oxidant cases. This could
be attributed to slight wind change conditions which could move the NO2
“cloud" away from the DOLA station before high values were detected. We
sought, therefore, to determine an NO2 "potential" based on meteorological
parameters. Regression analyses indicated that virtually all of the ex-
plainable variance (41% of 44%) could be attributed to the LAX 950 mb temp-
erature. Thus, by using that parameter as a surrogate for NO2 concentra-
tions, we could "stablize" the NO2 input parameter.

The inclusion of the previous day's LAX 950 mb temperature as a pre-
dictor (in the new equation) suggested that the change in key predictor
variables could be more important than the actual parameters. By examining
the two key change predictors (24-hour changes in the LAX 950 mb temperature
[LAX9DIF] and the 850 mb temperature [LAX8DIF]), and by eliminating some of
the less significant predictors (i.e. SUMPPG7 and VBGSHT2), we were able-
to construct a simplified algorithm which is the final algorithm given in
Section 3.2.1. On the dependent data set, this method achieved an cverall
score of 127 -- better than any other method. (See Table 3.11*)- The

kS

Verification tables (3.171 to 3.15) are included in Section 3.5,
"Werification," starting on page 111. It was not possible to complete
the chronological development of the algorithms without reference, at times,
to the verification scores; hence, the reference to such tables may appear

out of saguence in the text.
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primary improvement in this method over the new regression equation is in
its ability to predict stage 2 episodes. The new algorithm successfully
predicted 25% of the stage-2 episodes, with only a .005 false alarm rate,
whereas equation (3.11) would not predict any stage-2 events. On the

- independent data verification (Table 3.17), the new method scored a total

of 188, which was twice as good as any other method. Of key importance,
the method correctly predicted 85% of the episodes, and p%edicted one out
of the two (50%) stage two events with no false alarms. Clearly, it can
be seen that no other method even approached this accuracy.

Further improvements of the method were attempted, using best fit
techniques of the grouped terms of the algorithm. Both linear regression
and weighted linear regression were used, but the results were not as
successful as the original algorithm. Hence, this method was selected
as the final same-day prediction algorithm for Upland.

LA HABRA - (LAHB)
As in the case for DOLA, La Habra is affected by specific meteorological
conditions not necessarily representative of the basin-max conditions. Only

- when a "southern" route transport trajectory occurs is LAHB susceptible to

high ozone concentrations. It is nct surprising that straight forward re-
gression techniques were .not successful in achieving any reasonable pre-
diction equation. We therefore attempted sets of regression equation,
sorted on key variables. The two most productive sets are summarized in
Table 3.5. While the best fits occurred with the weekend/weekday stratifi-
cation, the least standard error occurred with the condition LAXTPH > O,
primarily due to the Tow observed oxidant conc¢entration induced by onshare
flow, represented by the positive gradient. In all cases, stage 2 episodes
were not predicted, with a tendency to significantly underpredict high
values.

Based on the successful methods developed for predicting oxidant con-
centrations at UPLA, and based on the regression results which selected
key predictor variables, we sought to develop a method which could not only
perform well on the low/moderate concentrations, but also for the high
oxidant days as well.
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Table 3.5 Key Predictor Variables for LAHB Same-Day Regression

(N'= 241, r = 0.53, Se = 6.2)

Where:

UPLAZMY
SANLAS7
LAXIBC3

LAX9TMA
LGBOVZ7
LAXTPH?
LAXSTMA

SANLAS7PC

LAX8DIF

Weekday - - Set #1 Weekend
Variable Coefficient Variable . Coefficient
UPLAZMY 0.28 LAX9TM4 0.37
SANLAS7 -0.25 LGBOVZ7 -0.33
LAXIBC3 -0.0007 LAXIBC3 -0.0015
LAX9TM4 0.21 UPLAZMY +0.16
LGB@VZ7 -0.14 LAXTPH7 - -0.34
Constant +2.2 Constant +3.5
(N = 367, r = 0.65, Se = 4.7) (N = 148, r = 0.70, Se = 5.3)
Set #2
LAXTPH7 < O LAXTPH7 > 0O
Variable - Coefficient Variable Coefficient
LAX8TM4 0.61 LAX8TM4 0.30
LAXIBC3 -0.0012 SANLAS7PC -0.31
LGBAVZ7 -0.26 LGB@VZ7 -0.21
SANLAS?Y -0.50 LAX8DIF 0.17
Constant +1.4 Constant +4.3

(N = 253, r = 0.59, Se = 3.6)

Yesterday's max oxidant at UPLA
SAN-LAS pressure gradient at 0700 PST
Change in the LAX inversion hase
height: T14Z today minus 147 yesterday
LAX 14Z 950mb temperature

LGB visibility at Q700 PST

LAX-TPH pressure gradient at 0700 PST
LAX 147 85Cmb temperature

Change in the SAN-LAX pressure
gradient; 0700 PST today minus 0700 PST
yesterday

Change in the LAX 850mb temperature:
147 today minus 147 yesterday
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An examinatien of individual meteorological parameters indicated
that linear relationships existed over some segment of the variable, but
not over the entire distribution. For example, we found that for the
LAX 850 mb temperature, values less than 10°C had 1ittle influence on
oxidant values at LAHB. Similarly, values over 24°C did not significantly
affect the high oxidant days. However, between 10°C and 24°C, there was
a maximum linear correlation between LAHB oxidant and the 850 mb temperature;
Other parameters which were found to have a segmented linear relation-
ship included: (1) the 24-hour 850 mb temperature change (LAX8DIF), (2)

the 950 mb temperature change (LAX9DIF), (3) LGB surface visibility
(LGBPVZ7), and the SAN-LAS pressure gradient (SANLAS7). Using a point-

score method, the significant portions of these key predictors were com-
bined. The results were presented in section 3.2.1. Verification using
this method did substantially better than persistence in both the dependent
data set and the 1977 independent data test (See Table 3.13). Also, this

" method was considerably better than the existing ARB subjective prediction

for 1977, which was only slightly better than persistence. Of particular
interest in the 1977 verification is that 65% of all predictions were
* 2 pphm, and a respectable 43% of all significant change days were within

+ 2 pphm. _ ‘
From these results, it appeared that a nearest neighbor approach would

yield an even better algorithm. Using the nearest neighbor regression method
described in Section 3.1, the following variables were selected as inde-
pendent variables:

(1) LGBEVZ7
(2) SANLAS?7
(3) LAXIBC3
(4) LAX9DIF

LGB visibility at 0700 PST

SAN - LAS AP at 0700 PST

24~hour LAX inversion base height change at 14Z
24-hour LAX 950 mb temperature change at 14Z

I

The number of nearest neighbors used in the weighted average calcula-
tions were 5, 10, 15, and 20. For the linear weighted average calculations,
the numbers were 15, 30, 45, 60, and 75. Root mean square errors for each
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of these methods are given in Table 3.6. As can be seen, the best results's
were obtained with 20 weighted average nearest neighbors, however, these
results were not as good as the point-score method. For example, the
nearest neighbor algorithm correctly predicted 88% of the episode condi-
tions, and achieved a false alarm/probability of detection score of 28.

The point-score method achieved 93% and 44, vespectively.

RIVERSIDE - (RIVR)

Results of initial correlations between meteorological parameters and
RIVR oxidant values were quite similar to those for Upland. Based on our
experience in developing an algorithm for Upland, we pursued similar techni-
ques for RIVR, using the LAX 850 mb and 950 mb temperatures and 24-hour tempera-
ture changes, as well as yesterday's oxidant persistence term.

Because of the tendency of regression analysis to underpredict high
‘oxidant days, a successful working equation was not anticipatéd, However,
such procedures were undertaken to verify the important meteorological

parameters and to serve as a comparison for other algorithms. Results of
- the regression analysis are shown in Table 3.7. As in the case for UPLA,
we were able to achieve a reasonably good fit (r = 0.82, N = 444) for the
best regression equation, but high-end accuracy was not sufficient.

To develop a working algorithm, therefore, trends of the 850 mb and
950 mb temperatures and their 24-hour changes were examined for possible
correlations to RIVR oxidant, As in the case of UPLA, the trend of
LAX8TM4, alone was a reasonable predictor. As a result, the ensuing algorithm
was keyed upon LAX8TM4.

Additional input from the 24-hour changes of LAX8TM4 and LAX9TM4 in-
creased the predictive capabilities of the basic algorithm by adding sen-
sitivity induced by changes in meteoroiogy.

After testing the model-against RIVRZM@ several alterations were
made to improVe prediction resolution and hence, prediction accuracy.
These changes included a 1imit for the magnitude of the 24-hour change of
LAXSTMA and LAXQTM4. Also, upon examination of the model output, it was
noted that for the month of Octqber’the algdrithm had a tendency for
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Table 3.6 Comparative Root Mean Square Errors (RMSE)

of Various k Nearest Neighbor Estimators

At 37

-

3 ==Ly

Fe——ra g

Estimator RMSE (Values in PPHM)
1. b5-Weighted Average Nearest Neighbqrs 5.494
2. 10-Weighted Average Nearest Neighbors 5.186*
3. 15-Weighted Average Nearest Neighbors 5.099*
4. 20-Weighted Average Nearest Neighbors 5.077*
5. 15-Weighted Linear Nearest Neighbors 5.827
6. 30-Weighted Linear Nearest Neighbors 5.350
7. 45-Weighted Linear Nearest Neighbors 5.173*
8. . 60-Weighted Linear Nearest Neighbors 5.132*
9. 75-Weighted Linear Nearest Neighbors 5.104*
0. Linear 5.296

(La Habra)

* Better than linear estimator
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Key Predictor Variables for

Riverside Same-Day Regression

Variable

~ LAX8TM4
LAX9TMA
SUM@PG7
RIVRZMY
SDBRTM7
RBLTPH7
SANSHC2
LGBAVZ7
CONSTANT

Where:

LAX8TM4

LAXSTM4
SUMPPG7

RIVRZMY

SDBATM/
RBLTPH7
SANSHCZ
LGBPVZ7

2.9
-3.4
-0.37

.19
.34
.46
Q22
.13
-2.09

o o o o o

LAX 850 mb Temp (°C) 14Z

LAX 950 mb Temp (°C) 14Z

| (LAX-DAG) + (SAN-LAS) + (SDB-VCV) + 6|
Pressure gradient (mb) 07 PST
Yesterday's 1-Hr max OX at Riverside
(pphm)

SDB surface temp 07 PST

(RBL - TPH) AP 07 PST

SAN 500 mb height change (10 M) 12Z
LGB Surface visibility (mi) 07 PST
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overprediction. October tends to have. increased offshore flow, which

can result in high temperatures and low oxidant values (due to the west-
ward push of pollutants). To adjust for the tendency to overpredict, per-
sistence was added to the algorithm for the month of October.

Desirable characteristics of the final model included: (1) overall
accuracy, (2) the ability to predict stage 2 episode levels, and (3) the
ability to predict significant changes.. "

When tested against the dependent data set, the algorithm verified
well against persistence in all categories,With special emphasis on the
significant change days where 39% of the predictions were + 2 pphm .

(See Table 3.14.) Also, it should be noted that although the model failed
to predict the site specific stage 2 episode, on the two days it did pre-
dict oxidant above 35 pphm, stage 2 concentrations did occur within the
basin. For the 1977 verification similar improvements over persistence

- were evident with a lower mean absolute error and 40% of significant change

day predictions within + 2 pphm,

NEWHALL - (NEWH)

To obtain an initial calibration point for Newhall oxidant, the
prediction algorithm determined for Riverside was applied to the Newhall
oxidant data. Similarities in the two oxidant distributions existed S0
an attempt was made to tailor the Riverside prediction equation to the
Newhall trends. For Newhall, oxidant concentrations exhibited greater
persistence tendencies; therefore persistence (NEWHZMY) was included
into the working algorithm. The resulting format for Newhall equation
was similar to that for October - Riverside.

In the evaluation of the initial algorithm, it was observed that the
model had a tendency to overpredict episode occurrences (i.e., it had a
large false alarm rate). The model also resulted in a large mean absolute
error with its cumulative prediction capabilities barely surpassing those
of persistence. (It should be noted that persistence scored better in
the rating format than most oxidant models.)
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Several regression analyses were attempted to modify and improve
the original algorithm.. First, regression analysis was focused upon
‘the dependant variables jn the primary equation. The resulting equation
was fairly accurate with R = 0.51 for 548 cases. MWhen tested against
the dependent data set the regression equation proved more accurate than
‘ the original algorithm tailored from that for Riverside. The regression
equation predicted with a higher accuracy (85%) and a lower mean absolute .
error (3.3) than the original algorithm (see Table 3,15j.

One critical feature of the model was its Tack of sensitivity in pre-
dicting high oxidant concentrations. The structure of the regression acted
to restrain fluctuating oxidant predictions. However, when the model did
forecast episode levels it achieved a high degree of accuracy, with a minimal

number of false alarms.
Further analyses were performed to expand the capabilities of both

candidate algorithms. Upon inspection of various potential predictors,
VGBSHC2 appeared to correlate well with the oxidant trends at Newhall.
This correlation was not evident in subsequent regression analyses, where
the inclusion of VBGSHC2 did little to significantly improve prediction
capabilities. _

Several additional regression attempts were performed upon selected
variables with the end result of no significant improvement in predictive
capabilities.

Using the initially created algorithm a correction term was constructed
to modify the prediction resalution. The difference between predicted and
observed oxidant was regressed against a series of independent variables
to form the correction term however, upon implementation it failed to
jmprove prediction accuracy. As a result, the regression equation developed
from the original variables was used as the primary predictive algorithm.

3.3 ONE-DAY (24-HR) PREDICTIONS
Perhaps the most important prediction time period is the 24-hour

prediction (issued at 3 PM). This issuance time 1is early enough to allow
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for the implementation of appropriafe abatement strategies, yet late enough
to incorporate important early-afternoon meteorological data (guch as the
mid-day LAX sounding). Also certain information about today's oxidant
values (persistence terms) can be utilized. Using the results achieved in
the development of the same-~day algorithms, we sought to explore a variety
of statistical methods to maximize the 24-hour capabilities. Final al-
gorithms for the five key sites are given in the following subsection, with

details of the chronological development given in Section 3.3.2.

3.3.1 Final Prediction Algorithms

1 UPLAND
0X = 0.36 (SDBPTM3) - 1.34 (LAXTPH3 - LAXTPH7) (3.12)
+0.33 (PASDZMp) - 10.6
where: -
SDB@PTM3 = Sandberg temperature at 1300 PST (°F)
LAXTPH3 = LAX-TPH AP at 1300 PST (mb)
LAXTPH7 = LAX~-TPH AP at 0700 PST (mb)

PASDZM@

(2) RIVERSIDE - (AID & Regréssion - See Figuré 3.12)

(3) NEWHALL - (AID & Regression - see Figure 3.13)
{4) DOWNTOWN L.A. - (AID - see Figure 3.10)
(5) LA HABRA - (AID - see Figure 3.14)

3.3.2 Chronological Development of Algorithms
UPLAND - (UPLA)

Of the five key sites, Upland is the most closely associated with the
basin-maximum oxidant levels. Thus, the prediction of the oxidant levels
at Upland is most critical for determining episode conditions for the
following day. For these reasons, a considerable effort was undertaken
along several statistical avenues.

Pasadena max hourly oxidant as_of 1400 PST (pphm)



ConpTION PREDICTION
LAX 850 mb LAX 850 mb YBG 500 mb Today's Max
Temg (202) Temp (20Z) 24 hr Height 0X at NEWH equation 2
> 18°C > 22°C Change (12Z) > 22 PPHM
>0 =
SAN 700 mb
Wind Direction 17
(12z2)
030°-090°
] equation 2
equation 1
LAX Inversion VBG 500 mb LGB Surface
Base Height 24 hr Helght Temp 1300 PST equation 1
(202) Change (122) < 85°F
< 1800 ft. >20m

! 1
2 -

SOB Surface )
Temp 1300 PST equation 1

> I8°F
{ 13
: V&G 500 ab
SDB Surface
24 hr. Height
Temp 1300 i7
;ﬂs’s-r C;ax;geﬂ(]?.z)
i
Today's MAX | -
0X at HEWH 14
> 14 PPHM
I n
7
Equatfon 1 = -0.57 PLTOPC3 + 0.29 PASDZMP + 0.16 SDBOTM3 - -0.55 LAXITT4

+0.72 LAXBTMQ -2.97

Equation 2 = -1,9 (SAMLAS3 - SANLAS7) - 0,57 PLTOPC3 + 0.0044 LAXIBH4 + 0-91'_LAX8TM@
) +0.90 (LAXITT@ - LAXITT4) + 0.57 [ GBQVZ3 - 0,57 LAXTPH3 + 0.16 LGBOTM3 -17.78

24 Hour Riverside Oxidant Pradiction Algorithm

Where: LAXS8TMO - 1PM 850 mb Temp at LAX (°C)
SDBOTM3 - 1PM Surface Temp at SDB (°F)
LGBOTM3 - 1PM Surface Temp at LGB (°F)
PLTOPC3 -~ Avg. of the 24 hr. Pressure Changes at WMC, RNO, TPH {mb)
PASDZMO -~ Today's 1-hr. Max OX at PASD (PPHM)
LAXITT4 - 7AM LAX Inversion Top Temp (°C)
LAXITT® - 1PM LAX Inversion Top Temp (°C)
SANLAS3 - 1PM Pressure Gradient Between SAN-LAS {mb)
SANLAS7 - 7AM Pressure Gradient Between SAN-LAS (mb)
LGBOVZ3 - 1PM Surface Visibility at LGB (miles)
LAXTPH3 - 1PM Pressure Gradient Between LAX-TPH (mwb)

Figure 3.12 Decision-tree Prediction Algorithm for RIVR (one-day
in advance). "YES" cendition proceeds horizontally to
the right; "NO" condition proceeds downward. Predicted
values are in PPHM.
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CONDITION PREDICTION
Today's Max 0X Today's Max 0X LAX 850 mb
At NEWH AT NEWH Temp (20Z) equation
> 10 PPHM > 18 PPHM > 26°C
RBL - TPH AP
1392 SSI‘b equation
| 12
LAX - TPH AP VBG 500 mb SDB ‘Surface
1300 PST Height (122) Wind Directio equation
> =4.0mb > 5840 m 1300 PST
360°> > 240°
| 15
LAX-TPH AP
1300 PST 1
< 5.0 mb
{ ‘ 14
VBG 500 mb 8
Helight (12Z)
> 5840 m n
! 8

Prediction = Q.61 LAXOWV3 + 0.27 NEWHIM® + 0.17 LAXIBT) -2.0 DMTATG3

-0.12 UPLAZMY + 0.23 LAXITT) + 4.4

Where: LAXOWY3 - 1PM Surface Wind Velocity At LAX (MPH)

Figure 3.13

NEWHZM@ - Today's 1-hour Max 0X at NEWH (PPHM)
LAXIBT) - 1PM LAX Inversion Base Temp (°C)
DMTPTG3 - 1PM Temp Gradient Between DAG-TRM (°C)
UPLAZMY - Yesterday's 1-hour MAX 0X at UPLA (PPHM)
LAXITT®. - 1PM LAX Inversion Top Temp (°C)

Decision-tree Prediction Algorithm for NEWH {one-day

in advance). "YES" condition proceeds horizontally to
the right; "NO" condition proceeds downward. Predicted
values are in PPHM. Equation is given on next page.




CONDITION

PREDICTION

LAX INVERSION
TOP TEMP
(202) > 23°C

SAN-LAS AP
1300 PST
< 4.0 mb

LAX INVERSION

BASE HEIGHT

(20zZ) < 2100
Ft

SAN-LAS AP

1300 PST
< 0.0 mb

LAX INVERSION

LAX INVERSION

LAX INVERSION
BASE HEIGHT
(20Z) < 500 Ft

YESTERDAY'S

MAX 0X AT UPLA
> 33 PPHM

AT (142) —{TOP TEMP i
< 12°C {20Z) > 25°C
| I
LAX 850 mb
TEMP (201)
> 20°C
I
SAN-LAS AP
1300 PST
< -2.0 mb

23

20

4
12

17

18

1
17

9

PERSISTENCE

Figure 3.14

Decision-tree Prediction Algorithm for LAHB (one-day

in advance).

values are in PPHM.

"YES" condition proceeds horizontally to

the right; "NO" condition proceeds downward. Predicted




W=

91

As would be expected, the relationship between meteorological variables
and observed oxidant levels weakens as the prediction lead time increases.
Initial screening regression yielded a prediction equation (which ulti-
mately turned out to be the most effective 24-hour prediction algorithm)
with a correlation coefficient (r) of 0.68. This compares to r = 0.83 for
the best same-day equation.

In examining the selection of variables, we noted that the screening
regression did not include specific pressure gradients which were thought to
be important. Part of this effect could be attributed to the seasonal
variations in the gradients (i.e. pressure gradients are more likely to
be offshore in the August through October months than for the May through
July period). Therefore, monthly "normal" values were computed for each
of the parameters in the data base. For each day, a "departure from
normal" was computed in terms of standard deviations from the mean. Re-
gressions were run using "departure from normal" input variables. The
results are summarized in Table 3.8. Even though pressure gradient
terms were included in the resulting regression equations, the explained
variance was not as great as the original equation.

Next, we applied the AID program to 20 potential predictors. The
combination of conditions yielding the highest oxidant category (final
node = 1) is defined by:

(1) LAX inversion top temperature (20Z) > 21°C
(2) LAX 850 mb temperature (20Z) > 22°C

(3) VBG 24-hr height change (12Z) >0 m

(4) LGB visibility (1300 PST) > 5 miles

(5) RBL - TPH pressure gradient (1300 PST) > 2 mb

Neither the AID tree nor the regression equation successiully predicted
ﬂany stage-2 events (equivalent to climatology), and the other aspects of the
verification were very similar. We chose the regression equation over the
AID output due to the increased simplicity of the regression (fewer input
variables) and the continuous nature of regression output (as opposed to
discrete prediction values from AID). However, we are including the full
decision-tree for possible utilization, if desired.
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Table 3.8 Key Predictor Variables for
UPLA 24-Hour Regression

To Predict UPLA OX To Predict (UPLA 0X)*
Variable Coefficient Variable Coefficient
LAXSTMZ* 0.38 LAXITTg* 0.17
SANWMC3* -0.14 SANWMC3* -0.16
LAXIRH@* +0.10 _ LAX9TM4* -0.22
LAXDAG3* -0.33 LAXIRH@* +0.13
LAX9TM4* -0.16 LAXDAG3* -0.40
LAXTRM3* +0.17 LAXTRM3* +0.22
Constant - #187 LAXSTMg* +0. 30

Constant +0.1
(N=488, r=0.56, Se=7.4) (N=488, r=0.63, Se=7.4)
Where:
LAX8TM@ = LAX 850 mb temperature at 19Z (°C)
SANWMC3 = SAN - WMC AP at 1300 PST (mb)
LAXIRH@ = LAX 1000 mb relative humidity at 19Z (%)
LAXDAG3 = LAX - DAG AP at 1300 PST (mb)
LAXOTM4 = LAX 950 mb temperature at 14Z (°C)
LAXTRM3 = LAX - TRM AP at 1300 PST (mb)
LAXITT@ = LAX inversion top temperature at (19Z)(°C)

*

departure from monthly mean {standard
deviation)
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An attempt was made to improve the regression results by using the

residuals as the dependent variable in AID, with the full set of meteor-

ological parameters as independent variables. Some key variables selected
were SANLAS3, WEEKDAY, NEWHZM@, and LAX8TM@. However the overall improvement
was only an additional 2% variance ékplained over the original regression.
The added complexity of the combined algorithms was thought to be much
greater in an operational sense than the small gain in accuracy, especially
since the combined method still failed to predict any stage-2 conditions.

As a comparative method, we used the Box-Jenkins time series to predict
UPLA maximum oxidant. As a brief review, the general Box-Jenkins model of
order (p,d,q) is written in the form:

(1 - 18 - ¢282 - . - ¢PBP) vdzt =(1 - 88 ~ ... - quq)at

where B is the backshift operator Bg =z d

t-p @nd v is the difference
operator det =2y =2y g4 If the tkansform is made from det =2y g tow

the model may be more simply written as a (p,q) of order d taking the form:
Wt - d)]Wt--] * e e (bpwt_P = at - 6-]at_1 = ceas eqat‘q
Here zy is the observable variable (the initial time series), Wy is the

differenced series and a, is the white noise or random disturbances which
cannot be predicted. Time series ana]ysis, in the Box-Jenkins approach,
may in fact be thought of as an attempt to reduce the residuals, or error
tarms, to uncorrelated noise.

For prediction purposes, we rewrite the model, with the appropriate

differencing d (usually D or 1), giving w_ as:

t

Mp T Ve T GMpp T T Gl p T3 - 83 - el - B3 g

(3.13)
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We know the past a's as the error between past forecasts and actual values.
We take the current a, a5 to be zero (0) as this is the statistical expec-
tation of these uncorrelated terms. The problem of starting the forecasts
can be most simply solved by taking all errors to be zero (0) until we have
computed some actual errors. The first errors will of course not be
accurate, but by doing this for the length of an observed series the errors
shall converge to their uncorrelated state.

Explicitly, then, our forecasting model is

A

We = GqWp g Foeen P dpWe p - By 3p g 7 eee 7 8y 34 g (3.14)

replacing t with t+1 we can express our prediction for tomorrow in terms
of yesterday and past days

Wepp T Oy oo T Oy p m 813p - e = Bgftq (3.15)

wherpe w is & forecast value and w is a known value.
For UPLA, we found that the model which predicted with the least error

was of the form p=g, d=1, and g=3. For the equation:

Ly = Zy g *ap = 893y - 831 7 938¢3 (3.16)
where Z = oxidant value
a = error terms
t = day
6 = best-fit coefficients

and the calculated 8 values wére determined té be:
8, = 0.29055 + 0.04029

1
8, = 0.38878 + 0.03884
8, = 0.17730 + 0.04036

Thus the resulting equation to predict tomorrow's oxidant Tevel, Zt+1’
given today's oxidant level, Zt’ and the known error terms for the past
3 days, is:
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Z = Zt - 0.29at - 0.3% - 0.18a

t+] t-1 t-2

Results of the daily predictions for the independent 1977 data set

are shown in Table 3.11 which summarizes the verification scores. It
‘¢an be seen that the time series method scored Tower than persistence, but
slightly better than the existing ARB objective equations. These results
indicate that the time series approach (for directly predicting oxidant
Tevels) is not an acceptable method.

Qur next approach was to utilize the successful results from the
same~-day prediction algorithm. Since the only va}iab]es included in the
UPLA same-day algorithm are LAX8TM4, LAX9TM4, and UPLAZMY, we sought methods
to predict these variables which in turn could be used to predict UPLA
oxidant. Prediction methods for the meteoraological variables included
Tinear regression, time series, and subjective techniques. However, since
the data availability of the needed parameters are available earlier in the
day (from morning observations), the items will be discussed-in the next
subsection on 30-hour prediction methods. Our final determination for the
24-hour prediction, therefore, indicates that the original regression
equation is the most usable method, and has been shown to be more accurate
than the existing ARB equation.

DOWNTOWN L.A. - (DOLA)
Initial regression techniques yielded the equation:
DOLA 0X = 0.34 (PASDZM@) + 0.14 (LGB@TM3)
- +0.15 (VBGSHC2) - 4.7

(N=501, r=0.60, S =4.2) (3.18)
where:
PASDZMP = today's max oxidant at Pasadena
LGBATM3 = LGB temperature at 1300 PST (°F)
VBGSHCZ = VBG 500 mb 24-hr height change at 12Z (10 m)

As 1in previous regression equations, the inability to predict high oxidant
~days (> 20 pphm) was pronounced. o
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Using AID, a decision-tree was developed, shown earlier in Figure 3.10.
Unlike other methods, the developed tree performed quite well, with an
excellent ability to correctly classify episode days. Over the three-year
period (1974-1976) this method correctly predicted 16 out of 31 possible
episode days with no false alarm days. On our "false alarm rate -

probability of detection" two-dimensional scoring system, the improvement
over all existing methods is substantial. For overall score (see Table 3;12),
the value of 208 is considerably greater than any existing method. In
particular, note that 97% of all forecasts were correct episode conditions,
and that 50% of all forecasts were +2 pphm. As mentioned in the previous
subsection, this method scored better than any same-day method. Hence

once the prediction is made, no same-day updates are necessary.

LA HABRA - (LAHB)

As in the previous cases, the first analyses attempted were linear
regrassion methods. Since the best fit using all data points explained
only 19% of the variance (r=0.44), we selected only the high (> 18 pphm)
and Tow {< 5 pphm) days to force a better fit. While the correlation
increased (r=0.58) the standard error of estimate was also increased
(from 6.0 to 7.7 pphm). The difficulty in using regression can be
attributed to the unique set of meteorological conditions necessary to

produce episodes at LAHB. A summary of the resulting equations is given
in Table 3.9.

Since the effects at LAHB are in many ways similar to DOLA, it was
anticipated that AID could identify the specific set of meteorological
conditions conducive to episodes. The resulting tree was giveh in
Figure 3.4. As expected the use of the decision-tree as a predictive
method, especially in the identification of episode days, was considerably
better than regression. Interestingly, the initial split for both LAHB
and DOLA trees was for the inversion top temperature > 23°C. More
importantly, the algorithm correctly predicted 58% of all episode condi-
tions for the dependent data set compared to 31% for persistence.
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Table 3.9 Key Predictor Variables for
LAHB 24-hour Regression

A1l Days ' LAHB 0X < 5, > 18
Variable Coefficient Variable Coefficient
LAXIBH@ -0.0012 LAXIBHP -0.0024
SANLAS3C -0.48 SANLAS3C -0.75
LGB@VZ3 -0.20 LGB@VZ3 -0.22
Constant +14.0 Constant +17.1

where:

LAXIBH@ = LAX inversion base height at 20Z (FT)
SANLAS3C = SAN - LAS AP at 1300 PST today minus

SAN - LAS AP at 1300 PST yesterday {(mb)
LGBPVZ3 = LGB visibility at 1300 PST
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RIVERSIDE - (RIVR)
The initial technique that was attempted to determine a working

algorithm for the 24-hour prediction was decision-tree analysis. Using
selected optimal variables, the primary decision-tree achieved a total
explained variance 48% for 475 summer cases. The initial split in the
decision-tree was based upon LAX8TMA. Other key variables included
SDBPTM3, SAN7WDZ2, VBGSHC2, LGBATM3, NEWHZMP, and LAXIBHP.

The model had the ability to forecast high values of ozone (up to
29 pphm) with a reasonable prediction resolution. With the input of
wind direction data, the algorithm increased its sensitivity (directional
sensitivity was not present in Tinear regression alone) and was able to
predict stage-1 episodes more accurately. It did not have the ability to
forecast stage-2 episodes. As a result, several alterations were attempted
to improve the primary model. )

In general, the basic framework of the initial algorithm was sound.
The only areas where improvement was -necessary were in the ability to
forecast- stage-2 episodes and in particular the loss of prediction resolu-
tion evident in the discrete forecasts. To adjﬁst the model, several
attempts were made to combine the output of the primary tree and
capabilities of multiple regression.

To increase the sensitivity of the model a selected set of final
nodes from the high end of the oxidant distribution were grouped together
for a regression analysis. The idea of grouping high oxidant values
together was to develop a continuous forecast method with the ability
to forecast stage-2 episodes. Since the pnrimary tree acted as a base screen
for these high oxidant concentrations, a new set of meteorological predictors
was chosen for the ensuing regression analysis. In a sense, we are trying
to optimize the use of many potential predictors.

Two equations were produced from this analysis using different combi-
nations of top nodes. The resulting equation proved to increase forecast
resolution significantly. The algorithm did not forecast stage-2 concen-
trations for the dependent data set, yet given the right combination of
parameters, a stage-2 prediction was possible. The only drawback of this
analysis was in the increased complexity of the algorithm.
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This procedure was repeated for middle class groupings of nodes to
improve stage-1 forecasting. Several nodes were selected including both
higher and lower class nodes, to expand the range of the prediction. The
inclusion of this secondary equation allowed the model to catch several
additional episodes (stage-1); however, it did overpredict for a larger
percentage of oxidant values. e '

Several additional regression runs were made for RIVRZMI. They
included a Tow class regression analysis (grouping bottom nodes together)
and binary split regressions. For the Tower class node regressions predic-
tion capabilities were not improved sufficiently to warrant the increased
complexity. The binary split analysis (using the initial split of the
tree as a high-low indicator) also did not work well as a forecast
algorithm.

One additional regression attempt was made--that relating a selected
set of predictors to the total oxidant data set. The resulting RIVRZMI
equation is given below.

0X = 0.063 LAXS8TMJ - 0.094 (LAXTPH3 - LAXTPH7) - 0.034 VBGSHC2
+0.17 SDB@TM3 - 0.39 LAXITT4 + 0.17 PASDZMA - 2.21 (3.19)
(N=435, r=0.67, Se=5.2)

where:
LAX8TM@ = LAX 850 mb temperature at 20Z (°C)
LAXTPH3 = LAX - TPH AP at 1300 PST (mb)
LAXTPH7 = LAX - TPH 4P at 0200 PST (mb)
VBG5HCZ = VBG 500 mb 24-hour height change at
12Z (10 m)
SDB@TM3 = SDB temperature at 1300 PST (°F)
LAXITT4 = LAX inversion top temperature at 20Z (°C)
PASDZM@ = Pasadena max hourly oxidant today (pphm)

" NEWHALL - (NEWH)

With the same day Newhall analyses demonstrating the difficulty of
predicting oxidant particularly about the stage-1 episode Tevel, a
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different approach to the development of an accurate forecast algorithm
was made. The initial procedure undertaken was to develop a decision-
tree for 24-hour Newhall oxidant. The tree was developed from a series

of highly correlating variables of whom NEWHZM@ was the key. Overall, the
tree explained 46.9% of the variance.

Other variables that were important included VBG5HTZ2, SDBOWD3,
UPLAZMY, LGBPVZ3, LAX8TMA, and LAXTPH3. The first two major splits,
though, depended upon NEWHZM@. Of the final nodes produced, only one was
able to forecast values of oxidant greater than 20 pphm. As a result,
additional sensitivity was necessary for a working algorithm.

Stepwise regression, performed on selected terminal nodes {the
highest nodes) used several additional predictors to increase stage-1
prediction accuracy. Various algorithms were attempted using different
potential predictors. The most successful prediction equation increased
the total variance explained to 55%. The ability to forecast episodes
was increased due to a basic reduction in false alarms.

Several additional regression equations were attempted to better
define NEWHZM1. Of these none improved the decision-tree predictions
significantly. A1l additional regression analyses were performed using
NEWHZM] versus a determined set of optimal predictors; The data set was
also regressed against the same day predictors; however, persistence be-
comes too dominant in the resulting equations, causing pocr forecasting
capabilities. The final day-in-advance Newhall regression equation that
can be used as an alternate equation is essentially modified persistence:

NEWHZMT = 0.50 NEWHZM@ + 0.019 LAXSTM4 : (3.20)
+0.013 (LAX9TM4 - LAXSTMY) + 3.16
where: '
LAX8TM4 = 14Z 850 mb temperature at LAX (0.1°C)
LAX9TM4 = 147 950 mb temperature at LAX (0.1°C)
LAX9TMY = 14Z 950 mb temperature yesterday at LAX (0.1°C)

(N=504, r=0.62, Se=4.9)
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3.4 THIRTY-HOUR PREDICTION ALGORITHMS

The 30-hour final prediction algorithms for the five key oxidant
stations are based upon the "perfect prog" analysis. Each algorithm uses
the input of both "in hand" morning meteorological variables and the out-
put of selected variables forecast for the next day from the NWS numerical

progs. Perfect prog analyses are based upon the premise that the numerical
models produce valid estimates of same-day conditions permitting accurate
oxidant prediction. )

A variety of other methods were employed, however the statistical
relationships between data in-hand this morning and observed values tomorrow
afternoon (30-hour prediction) were satisfactory only under persistent
conditions. This strongly suggests that the use of historical data for
predicting oxidant concentrations 30 hours in advance is not appropriate,
due to the dynamic meteorological changes that can occur.

To overcome these problems, some estimates of predicted meteorological
conditions were necessary. As will be discussed in Section 3.4.2, two .
prediction features were evaluated: (1) subjective prediction of key
meteorological variables, and (2) use of numerical progs (LFM 500 mb
height data). Our results indicated that the numerical progs provided the
most stable features, and in fact, achieved greater accuracy in some in-
stances than the most successful 24-hour algorithms. The final 30-hour
algorithms presented below, therefore reflect the "perfect prog" approach.

3.4.1 Final Forecast Algorithms
DOWNTOWN L.A. - (DOLA)
0X = 0.35 (VBGSHTZp)

0.17 (SUM@PG7) + 0.12 (DOLAZMY) = 190.4 (3.21)

(N =447 v = 0.62 rZ = 0.38 Sg = 4.2)
UPLAND - UPLA
0X = 0.68 (VBGSHTZp) - 0.29 (VMWSHTZP) + 0.15 (UPLAZMY) (3.22)
+ 0.25 (VBGSHCZP) - 375.7
(N =442 r = 0.69 re = 0.47 S = 6.5)

e



102

RIVERSIDE - (RIVR)

0X = 0.61 (VBG5HT2p) - 0.23 (VMWSHsz) +0.18 (VBGSHCZp) - 336.0 (3.23)
(N =449 r=0.66 re = 0.44 S, = 5.3)

LA HABRA - (LAHB)
0X = 0.36 (VBGSHTZ,) - 0.12 (VWWSHTZ)) + 0.23 (VBG5HCZ,) (3.24)
' + 0.14 (LAHBZMY) - 197.5
(N=408 r=0.50 ' ré=0.25 S, = 5.7)

NEWHALL - (NEWH)
0X = 0.26 (VBGSHTZ)) + 0.55(LAXSTHA) + 0.0006 (LAXIBH4) - 146.0 (3.25)
(N =454 r=0.53 r2 = 0.28 Se = 5.3)

where:

(units)

(10 m) VBG5HT2p
(10 m) VMWSHTZp

VEG 500 mb height for 127 tomorrow (from LFM progs)
500 mb height difference between VBG and WMC for

12Z tomorrow (from LFM progs)

500 mb 24-hour height change at VBG: tomorrow's 127
height (from LFM progs) minus today's value

(10 m) VBGSHCZp

(mb) SUMPPG7

sum of the pressure gradients at 15Z today:
| (SAN-LAS) + (SBD-VCV) + (LGB-DAG) + 6]

C) LAX8TM4 = LAX 850 mb temperature at 14Z today

ft LAXIBH4 = LAX inversion base height at 147 today
pphm) DOLAZMY = yesterday's max oxidant at DOLA

pphm) UPLAZMY = yesterday's max oxidant at UPLA

v

(°
(ft
(pp
(

3.4.2 Development of the Final Forecast Algorithms

To produce a 30-hour forecast for oxidant at the five key stations
several methodologies were attempted including: regression analysis,
day in advance meteorological prediction and perfect prog regression analysis.
The initial procedure incorporated regression analysis between meteorological
variables and tomorrow's maximum oxidant at Upland (UPLAZM1). UPLAZM1 was
chosen because of its frequency and severity of 0X episodes (both stage 1
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and stage 2). Selected combinations of meteorological variables available
at the forecast period (MFRSHC2, LAX8TM4, SANLAS7, VBG5HT2, LAX8TMY) were
regressed against UPLAZMI. Regressions were segregated by VBGSHT2

(>585 and <585) and LAXS8DIF (LAXS8TMA4-LAXSTMY) >0 and <0, to improve
prediction resolution. The concept of selecting discrete intervals of
different predictors is analogous to setting a screen -- hopefully
eliminating lower oxidant days from the full analysis.

The resulting regression equations proved to be unreliable as
forecast algorithms. Shortcomings were evident in their inability to fore-
cast stage-2 episode concentrations and in the Tow amount of variance
explained (R2 = 0.37 for the most productive equation). A large average
standard error suggested the randomness of the predicted day -in -advance 0X.

The major factors contributing to the poor correlations were the
dynamic changes in meteorological conditions over the 30-hour period which
were not predictable from initial- conditions. The inability to predict the
direction of a trend was particularly obvious from the resulting forecast.
In effect, persistence was as good a predictor as the best Tinear fit.

- To overcome this difficulty, we applied a two-step procedure: (1)
predict key meteorological parameters on a 24-hour basis (predict tomorrow
morning‘s condition based on this morning's data), and (2) input the results
into the same-day algorithms. Three prediction methods were applied for
the 24-hour meteorological prediction: (1) linear regression, (2) time
series, and (3) subjective procedures.

Using Tinear regression, several key variables were predicted (LAXIBH4,
LAX9TM4, and LAX8TM4). As in many of the previous regression analyses,
significant changes were not caught until after the fact. Also the
direction of change was not accurately forecast. The incTusion of per-
sistence into the regression acted to stabilize the trends; however, rapid
changes were suppressed in favor of the existing trend. In general, the
regression equation proved to be inadequate for the designed purpose,
again tending toward persistence.

It should be noted that, for UPLA, the same-day algorithm is quite
sensitive to the direction of change of both the 850 mb and 950 mb tempera-
tures. Thus a prediction of small temperature decreases, when in fact small
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temperature decreases occurred, could be substantially in error. Therefore
the direction of change is important for the two-step prediction procedure
to be accurate. ' )

Time series analysis was then tested to obtain improved estimates of
several key predictors. All of the time series models (LAX8TM4, VBG5HCZ,
LAXIBH4, PLTOPCY, SANLAS7, MFR5SHC2) represented modified forms of per-

“ sistence. In particular, the change variables VBG5HC2, PLTOPC7 and MFR5HCZ -
expressed 1ittle sensitivity to actual observed changes in the magnitude and
direction of those variables. For all models major fluctuations in the
existing variable distribution were suppressed. The output of the LAXIBH4
time series was extremely similar to that of the regression analysis where
persistence played a dominant role. The results of the time series analysis
failed to produce any valid met forecast for the ensuing day. The time
series equations are given in Table 3.10.

The validity of subjective forecasting was also examined to determine
whether or not it could be intermeshed with the objective forecasting system.
Variables subjectively forecast daily included LAX8TM4, LAX9TM4, LAXIBH4,
LAX1DT4, and SUM@PG7. '

Prediction data were obtained from AQMD records for the 1974-1977 period.
Since the AQMD 30-hour prediction is based on subjective meteorological in-
put into an objective model, these prediction parameters were readily
available. To obtain an initial "calibration® of the accuracy of the subs-

jective predictions, the predicted values were regressed against the actual
values. Correlation coefficients for all of the variables were above

0.70. However, from an examination of the residuals, predicticns

of significantbchange days were poor (bofﬁ“iﬁimagnitude and directibn of the
change). To determine the overall accuracy, we used the existing UPLA
algorithm to estimate the oxidant persistence term, and the subjective pre-
dictions of the 850 mb and 950 mb temperatures. These were verified for both
the 1974-1976 and the 1977 data bases. Table 3.11 gives the UPLA 1976 _
and 1977 verification scores. For comparative purposes, the subjective

input prediction scored as follows: '

Data Base T, - 10E + T, + C + P, = Rating
1577 - 68 61 30 10 25= 72
1974-1976 68 62 27 12 28= 73
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Table 3.10 Summary of Time Series Prediction
Equations for Key Meteorological

Variables
Variable Equation
LAXIBH4 = 0.58 Ye * 754
LAX8TM4 = Ye - 0.21_t_] - 0.391_'_‘2 - 0.17_t__3
VBGSHCZ = 0.52y, - 0.44a, - 0.27a;_ - 0.17a,_
SANLAS7 = Yt - 0.32a; - 0.3%a, ;- 0.19, ,
MFREHCZ = Y = O.OBat - O.45at_1 - 0.25at‘_2
PLTCPC7 = 0.25yt - 0.45a, - 0.46at_]

where Y = today's parameter value

error term on day, (t-d), for t = today,
d = number of previous days

3 (t-q)

2
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Note that these results are about equivalent to (though slightly less
than) the current ARB subjective oxidant prediction capability. Thus there
appears to be no advantage in subjectively predicting key meteorological
parameters over direct subjective oxidant prediction.

As a forerunner to the "perfect prog" final algorithms, we sought to
utilize upper air progs to predict the key meteorological variables. The
premise was based upon a Tinear relationship between LAX8TM4 and LAX9TM4
versus 500 mg heights. By using this output as same day forecasts of
alternate variables for the same period, the problem of forecasting weather
by either purely statistical methods or subjective considerations could be
avoided. Use of the output from the numerical models has the advantage of
being closer (in time) to the oxidant condition.

Using VBG5HT2 and MFRSHCZ, a regression equation was generated for
LAX8TM4. The regression equation explained 67% of the variance in the
850 mb temperature yet had difficulty predicting.significant changes, in
particular the direction of the significant change. As previously

mentioned, the directional change inaccuracy accounted for the lack of
good prediction method.

Another method of using numerical progs involved scatterplot analysis.
By plotting oxidant as a function of two variables obtained from the 500 mb
progs, visual analysis of potential screens (thresholds of meteorological
variables) defining high oxidant days was made. Several combinations were
attempted including oxidant as a function of VBGSHCZ and SMOSHT2 (SANSHTZ2-
QAKSHT2) and oxidant as a function of VBGSHTZ and (VMMBHTZ + VMWSHT2)/2,
(see Figures 3.15 and 3.16). In each scatterplot the darkened triangle
represents a stage-2 episode. In Figure 3.16 there is no clear threshold
for high oxidant levels.

Figure 3.15 illustrates a reasonable set of threshold values of met
variables for UPLAZM@, screening about 20% of the total number of days with
92.7% probability of no-episode conditions. The intent was to refine the
unresolved cases with additional variables, such that eventually a
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combination of conditions would give a reasonable separation of stage 2
conditions. Ten successive screening scatterplots were generated (with
input available from the numerical progs), but no clear-cut resolution
was achieved.

Asa result, we proceeded with the development of "perfect prog"
regression equations, using observed 500 mb heiqht data to achieve the
greatest Tinear correlation. Upper air variables, incTuding VBGSHT2,
VBGSHT2-WMCSHT2 height differences and VBGSHT2 were combined with
various in-hand variables including SUM@PGS, LAXIBH4, LAX8TM4 and
UPLAZMY for the analysis. The resulting regression equation for Upland
predicted with more accuracy than either set of equations determined by the
initial regression or by the subjective/objective same day oxidant model.
In fact, the verification using this method did better than the 24-hour
algorithm! From Table 3.11, it can be seen that the perfect prog method
scored 91, greater than any other day-in-advance prediction method. To
test the reliability of actual “"prog" input, key 500 mb height values were
extracted from the 24-hour prediction panel of the NMC LFM prog package issued

- by 0900 PST for the May-October, 1977 period. These data provided a real-case

test of the perfect prog method (since the developed equations were based on
actual height data). The 1977 verification for Upland (Table 3.11) .shows
that the perfect prog equation scored 97, better than any other day-in-
advance method, and was about equivalent to the current ARB subjective same-
day score (98).

One additional method was attempted: to relate given meteorological
variables to the change in daily oxidant values (AC). Thus if we could
predict an expectad AC, and we use the same-day oxidant prediction algorithms,
we could predict tomorrow afterncon's oxidant. Using Upland oxidant data
and 12 meteorological variables (LAX8TM4, MFRSHC2, VBG5HC2, VBGSHT2, LAXIBH4,
LAXIDT4, OAKSTC2, LAX9TM4, LGBATMY, SAN7RH2, SMMSHT2, and LAXITH4), the AID
program was used to develop a decision-tree for AC. The results, however,
yielded too much scatter, which when coupled with the same-day algorithms,
proved to be substantially less accurate than the perfect prog method.
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From the success of the perfect prog method at Upland, similar
perfect prog equations were developed for the other four key sites. Veri-
fication results indicated that this method, as in the case for Upland,
scored better than the 24-hour algorithms for both Riverside and La Habra.
However, for DOLA and Newhall, the perfect prog method was not as good
as thev24-hour algorithms, described in the previous subsection.
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3.5 VERIFICATIOM

In Chapter 2 we described the method of evaluating predictive
capabilities. Briefly stated, that method considers four key aspects
of verification:

(1) episode prediction accuracy

(2) quantitative prediction accuracy

(3) significant change accuracy’

(4) episode probability of detection/false alarm tradeoffs

Tables 3.11 through 3.15 summarize the verification results for both
the dependent (1974-1976) and independent (1977) data sets at each of the
five key sites. Results are presented according to methods available in a
similar time period (i.e., all same-day‘prediction methods are grouped
together and all day-in-advance methods are grouped together). The data
compiled for the 1977 ARB and AQMD subjective predictions were taken from
the final output records of these agencies. In other words, these represent
the "official" forecasts issued.

It can be seen that in each case, the best method is one of the newly
developed algorithms, and that similar results occurred on the independent
data sets. Though none of the algorithms achieved the desired “goal" level
established in the Phase I report, nevertheless, substantial improvement
over all existing methods was achieved for most of the sites.

Using one-day persistence as a basis for comparisons, a ranking of all
available methods on the independent data set (1977) is given in Table 3.16
The method used to construct the ccmparable scores is simply the fractional
amount of the perfect score of the algorithm minus the equivalent value for
one-day persistence. For example, the best method listed is for Newhall-
same-day. From Table 3.15, the score of the new algorithm is .455. Sub-
tracting the one-day persistence score of .165, we get an improvement over
persistence (comparable score) of +.290.

As can be seen, most of the day-in-advance methods have negative scores
(i.e., worse than one-day persistence). However, these predictions are
usually made before today's value (persistence term) is known. Therefore,
a comparison against one-day persistence may be too stringent a test of
day-in-advance methods. (We used two-day persistence for the tabulations
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Table 3.11 Overall Oxidént Prediction Rating for Upland

N ~ METHOD Te - 106 + T2+ C v P (4LF/A) = R R/ perpEcT R
PERFECT 100 o 100 100 100 (100,0) 400

DEPENDENT DATA SET: MAY-OCT 1974-1976

PO T Y Y YT T LI R L L L A At bt SAME..DAY PREDIC'!'IQNS PRt S Y SRR T L LI L DAL AL A0 S

454 1-DAY PERSISTENCE 67 57 28 e 25 (27,3.7) = 63 .158
460 AQMD OBJECTIVE 74 45 35 24 26 (4, 1.0) = 114, .285
142 ARB OBJECTIVE 54 74 28 18 20 (100, 6.3) = 46 115
452 ARB SUBJECTIVE 7% 46 35 17 39 (31, 2.4) = 121 .303
498 NEW ALGORITHM 75 46 35 18 45 (31, 1.9) = 127 .318*
[ T D L L ONE-DAY PREDICTIONS J T L b
460 CLIMATOLOGY 59 67 22 17 25 (0,0) = 56 .140
452 2-DAY' PERSISTENCE 55 76 16 ¢ 0 (5,4.9) = -5 -.013
434 AQMD QBJECTIVE 68 56 30 14 25 (9,1.8) = 81 .203.
460 AQMD SUBJECTIVE 68 57 28 12 34 (18, 1.6) = 85 .213
133 ARB QBJECTIVE £8 64 30 10 25 (0,0) 3 59 .148
451 ARB SUBJECTIVE .. | €8 54 29 17 21 (13, 3.0) = 81 .203
515 NEW ALGORITHM (24-hr) 72 52 23 7 25 (0,0) = 81 .203

507 PERFECT PROG (30-hr) 70 54 27 23 25 (0,0) = 91 .228*

INDEPENDENT DATA SET: MAY-QCT 1977

sanse asew ssesssesade SAME_DAY PREDIC‘I‘IONS . .‘t..-.qu-Qc--c..‘l.c....‘.l..'OCIIOOCOI.CC
178 1-DAY PERSISTENCE 74 £0 38 a 20 (0, 1.1) = g2 .20%

1786 TIME SERIES 72 55 -33 0 18 (0, 1.7) = 68 .170 .
172 ARB (BJECTIVE 68 53 24 12 0 {0, 5.1) = 45 113

172 ARB SUBJECTIVE 78 44 36 4 24 (0, 0.6) = g8  .245

178 NEW ALGORITEM 85 36 49 20 70 (50, Q) = 188 .470*
cese ONE-DAY PREDICTIONS ceasevensesssvsntsttestacanssercensesitsteen
195 CLIMATCLOGY 57 66 23 4 25 (0,0) = 43 .108

174 2-DAY PERSISTENCE 70 54 42 4 20 (0, 1.2) = 82  .20%

145 AQMD SUBJECTIVE 74 67 27 6 25 (0,0} = 65 .182

151 ARB QOBJECTIVE &4 55 29 0 25 (0,0) = §3 .158

172 ARB SUBJECTIVE 70 52 32 6 ~ 24 (0, 0.6) = 74 .185

177 PERFECT PROG (30-hr) 75 50 43 4 25 (0,0) = 97  .243*

* = Best Method ! LEGEND ] R = Rating

N = Number of Predictions - " Tp = Correct +2'PPHA (%) P = Scure, Using Figure 2.4 °
Te= Total Correct (%) ¢ = Significant Changzss Pq= Probability of Detection (%)
E = Mean Absolute Error (PPHM) Correct +2 PPHM (%) F/A= False Alarm Rate (%)
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- Table 3.12 Overall Oxidant Prediction Rating for Downtown Los Angeles

N » METHOD Te - 208 + T2+ ¢+ p (pdF/n) = R Peerrecr R
PERFECT 100 0 100 100 100 (100,0) 400
m‘ DEPENDENT DATA SET: MAY-OCT_]974-1976
7_ 0800000003080 040008080E0RB0600808008 SAME_DAY PREDICTIONS NN IO ORN NI Cs NN EetaRTEssecReestdcdiionedise
‘T 546 1-DAY PERSISTENCE 90 35 47 0 12 (24,4.8) = 114 .285
i 547 TIME SERIES 93 33 49 0 21 (0,1.3) = 130 .325
i 302 ARB SUBJECTIVE "93 33 48 11 36 (24,2.0) = 155 .388
i NEW ALGORITHM (24-hr) (SEE BELOW) '
LI YT Y Ly T P Y P T YT 2T ) ONE_DA\{ PREDIc'rIONS b

E 551 CLIMATOLOGY 94 39 40 36 25 (0,0) = 150 .375 "
3 546 2-DAY PERSISTENCE 89 4 39 e -0 (12,5.5) = 84 .210

547 TIME SERIES 94 38 41 11 25 (0,0) = 133 .332
g 552 AQMD SUBJECTIVE 87 42 34 5 0 (44,9.9) = 84 .210
: 300 ARB SUBJECTIVE 93 35 45 20 25 (12,2.3) = 148 .370
. 493 NEW ALGORITHM (2&-hr) 97 30 50 19 72 (52,0) = 208 .520*
? 449 PEREECT PROG (30Q-hr) 93 35 41 8 25 (0,0) = 132 .330 -
3 . : .
i INDEPENDENT DATA SET: MAY-OCT 1977 -
E SADSI00TOCTALACLELNICEBOLBIIINVOROTOW SAME_DAY PREDICTIONS . cesmeses .se stodavetaee
i 180 1-DAY PERSISTENCE ~ 97 3 .57 0 20 SO,] .6) = 143 .358
| 180 ARB SUBJECTIVE 98 34 47 0 52 (33,1.1) = 163 .408
- NEW ALGORITHM (24-hr) (SEE BELOW) :
f

cvacsesos . ONE-DAY PREDICTIONS > : — -
H 178 2-DAY PERSISTENCE 97 38 40 20 20 (0,1.7) = 139 .348
= 180 AQMD SUBJECTIVE 94 42 40 20 2 (0,3.9) = 114 .285
. 180 ARB SUBJECTIVE 98 35 46 0 22 (0,0.5) = 131 .328
B 182 NEW ALGORITHM (24-hr) 98 33 59 20 25 (0.0) = 169 .423*
~nm_“—b—_“'W"‘T;;--B_e:":?;i"ie.T:l’lud { LEGEND R = Rating S ———

r N = Number-of ‘Predictions -
Te= Total Correct (%)

L E = Mean Absolute Error (PPHM)

To =:Correct +2'PPHM (%)

C = Significant Chan
Correct +2 PPHM

%

"7 Pr='Segra,; Using Figure 2.4
Probability of Detaction (%)

Py=

F/A= False Alarm Rate (%)
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Table 3.13 Overall Oxidant Prediction Rating for La Habra

N ' METHOD

To - 1E + T2+ C + P (pdF/R) = R MeemrecTR

PERFECT

—

100 0 100 160 100 {100,0) 400

DEPENDENT DATA SET: MAY-OCT 1974-1976

S EEPESEIEONSENEONURISRNENNIIILACI RS

SAME-DAY PREDICTIONS AT IEIBINTANEITIIISESALETERIVAINSRRSIIS

500 . 1-DAY PERSISTENCE 85 45 45 0 0 (27,7.4) = 85 .213

480 NEW ALGORITHM S0 32 52 26 42 (28,2.0) = 178 .445*
seseseassssarcrstacesssosnsesaavistse ONE-DAY PREDICTIONS - vascae cevenscersusstasacsssans
492 2-DAY PERSISTENCE 83 56 33 13 0 (15,8.3) = 73 .183

486 NEW ALGCRITHM (24-hr) 82 43 45 10 0 (56,13.9) = 94 .235

468 PERFECT PROG 90 48 28 15 28 (4,0.2) = 112 .280*

INDEPENDENT DATA SET: MAY-OCT 1977

sssses casses evn

SAME-DAY PREDICTIONS essscassacsresadadsrenersRRsIRETRRRLLETARRSS

180 1-DAY PERSISTENCE
154 ARB SUBJECTIVE
181 NEW ALGORITHM

96 27 58 0 44 (33,2.2) = 171 .428
95 29 56 0 52 (50,2.2) = 178 .435
96 23 65 43 48 (33,1.7) = 229 .523*

ssane -w

ONE-DAY PREDICTIONS  ssessessasccvcssecusssssacnssnaonatsssonnson

181 2-DAY PERSISTENCE 33 35 50 8] 8 (0,3.3) = 116 .290

183 AQMD SUBJECTIVE 90 51 39 11 0 (33,7.7) = 89 .223

153 ARB SUBJECTIVE 94 32 52 0 25 (50,2.2) = 139 .348*

178 PERFECT PROG (30-hr) %6 43 33 29 23 (0,0.8) = 138 .345
* = Sest Method { LEGEND

Rating

N = Number-of Predictions -

Te= Total Correct (%)
E = Mean Absolute Error (PPHM)

R

" T, = Correct T2'PPEM (3} - °
€ = Significant Chan?es Pq
Correct +2 PPHM (%) F/

= Score, Using Figure 2.4
= Probability of Detection (%)
A= False Alarm Rate (%)
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Table 3.14 Overall Oxidant Prediction Rating for Riverside

N METHOD Te - 20e + T2+ c +p (par/a) = R Pperrerer r
PERFECT 100 0 100 100 100 (100,0) 400

DEPENDENT DATA SET: MAY-OCT 1974-197§

8008000 0N00EEE0E0E4BIGR00CICESSRARTO SAME-DAY PREDICTIONS C 4000800 CIT00EININNEAINNEEA0TRRA000000EREIe0N

540 1-DAY PERSISTENCE A 45 33 0 23 (0,0.7) = 82 .205

540 NEW ALGORITHM 78 42 39 33 25 (0,0.3) = 139 .348*%
SEEP0L0AINTOTEENICINCETTONICENOERES ONE"DAY PREDICTIONS VUGV ERIII NP E AR 2284000000088 00000 00

539 2-DAY PERSISTENCE 64 62 25 4 23 (0,0.7) = 54 135

478 NEW ALGORITHM (24-hr) 74 42 36 12 25 (0,0) = 105 .263

484 PERFECT PROG (30-hr) 73 43 - 38 20 25 (0,0) = 113 .283*

INDEPENDENT DATA SET: MAY-OCT 1977

E = Mean Absolute Error (PPHM) Correct +2 PPHM

cees eeceveow SAME-DAY PREDICTIONS . oe PY vy
183 1-DAY PERSISTENCE 82 44 37 0 24 (0,0.5) = 99 248

184 NEW ALGORITHM 33 37 45 40 23 (0,1.1) = 154 _385*

.o ONE-DAY PREDICTIONS . . eoes cene

181 2~DAY PERSISTENCE 70 50 29 5 24 (0,0.5) = 68 .170

181 AQMD SUBJECTIVE 75 49 36 1 25‘(0,0) = 98 .245

174 NEW ALGORITHM (24~hr) 74 43 31 18 24 (0,1.1) = 99 .,248

178 PERFECT PROG (30-hr) 74 45 40 12 25 (0,0) = 106 .265*
* = Bast Hethod = R B 2 Rating R
N = Number-eof ‘Predicttons - "7 Tp =‘Correct +2°PPHM (%} - P ='Scare ;Ustng Floure 2.4
Te= Total Correct (%) ¢ = Significant Chan%es P4= Probability of Detection (%)

%) F/A= False Alarm Rate (%)
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Table 3.15 Overall Oxidant Prediction Rating for Newhall

e - METHOD Te - 105 + T2+ ¢+ p (dFA) = R eerrecrR
PERFECT 100 t] 100 100 100 {100,0) 400
DEPENDENT DATA SET: MAY-OCT 1974-1976
P Y T Y Y EL LR 2 TR 1 SAME-DAY PREDICTIONS eI rataerIdetieatssensttaldisnsanavassvace
546  1-DAY PERSISTENCE 82 39 42 a 0 (43,9.2) = 85 .213
547  NEW ALGORITHM . 85 33 ‘ 43 3 60 (64.2.3) = 163 .3%0*
BB SSINEIININENEEINBRBNSITIIRNITIS ONE—DAY PREDICTIONS PP T T Y YL S LT L LD LA L bt dbnd
545  2-DAY PERSISTENCE 75 56 30 0 0 (22,12.7) = 49 .123
549  NEW ALGORITHM (24-hr) 84 34 47 3 35 (31,3.1) = 135 .338*
480  PERFECT PROG (30-hr) 78 46 31 14 0 (38,13.3) = 77 .1s3
INDEPENDENT DATA SET: MAY-OCT 1977
SNSRI NNE LGNGO ANGICROESATNIERRIAS SAME_DAY PREDICI-IUNS . e edetes st RNE NS eIRRdE AR ARERARARNREtRRERINS
- 183  1-DAY PERSISTENCE 74 43 .35 0 0 (59,13.1) = 66 .185
182  NEW ALGORITHM 84 29 47 4] 80 (88,1.5) = 182 .455*
......-,.......“‘........-..........- ONE-DAY PREDICTIONS ssneneee essssesserassessnscssany
182  2-DAY PERSISTENCE 69 56 33 a 0 (53,15.4) = 4§ .115
182  AQMD SUBJECTIVE 74 45 37 7 0 (62,8.2) = 73 .183
180 NEW ALGORITHM (24-ar) 79 42 41 0 (67,10.3) = 78 .195*
* = Best Method 1 LEgeno | Rating
N = Nember-of Predictions - "~ Tp & Correct +2°PPHM (%)

Probability of Detection (%)

='Sgora, Using Flqure 2.4
= False Alarm Rate (%)

R
5
Tc= Total Correct (%) € = Significant Chan%es Py
E = Mean Absalute Error (FPHM) Correct +2 PPHM (%) F/A
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Table 3.16 Comparable Scoring and Ranking of Prediction
Methods Using Independent Data Set (1977)

LOCATION METHOD PREDICTION TIME COMPARABLE SCORE*
Newhall New Algorithm Same Day +.290 (+.]77)**
Upland New Algorithm Same Day +.,265 (+.160)
Riverside New Algorithm Same Day" +.137 (+.143)
La Habra New Algorithm Same Day +.095 (+.232)
DOLA New Algorithm 24-hour +.065 (+.235)
DOLA ARB Subjective Same Day +.050 (+.103)
Upland ARB Subjective Same Day +.040 (+.145)
Upland Perfect Prog 30-hour +.038 (+.070)
Newhall New Algorithm 24-hour +.030 (+.125)
Newhall AQMD Subjective 30-hour +.618 N/A
Riverside Perfect Prog 30~hour +.015. (+.078)
La Habra ARB Subjective Same Day +.007 N/A
Riverside  New Algorithm 24-hour Z0.00 (+.058)
Riverside AQMD Subjective 30-hour -.005 N/A
Upland ARB Subjective 24-hour -.020 (+.045)
DOLA ARB Subjective 24-hour -.030 (+.085)
Upland AQMD Subjective 30-hour -.043 (+.055)
Upland ARB Objective 24-hour -.047 (-.010)
DOLA AQMD Subjective 30~hour -.073 (-.075%)
La Habra ARB Subjective 24~hour -.080 N/A

La Habra Perfect Prog 30-hour -.083 (+.067)
Upland ARB Objective Same Day -.092 (-.043)
La Habra AQMD Subjective 30-hour -.205 N/A

*Comparab]e Score = (Method Score - One Day Persistence Score).

*%
Comparable Score for 1974-76 dependent data set.
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by site.) For purposes of establishing a fixed vaiue by wnich we can
compare all methods (same-day and day-in-advance), we decided to
retain one-day persistence as the compariscn term.

Another way of demonstrating the effectiveness of the final algorithms
js to compare the results to the best existing prediction methods. These
are given in Table 3,17, Note that the same day prediction methods did
substantially better than the best existing methods, and while the improve-
ment in day-in-advance capabilities is not as dramatic, there are appreciable
results (except for La Habra). It should also be noted that in many in-
stances, the best existing methods are subjective predictions. The new
algorithms are completely objective, with input data readily available.
Thus improvement over previously used objective systems is appreciable.
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Table 3.17 Percent Improvement of New Algorithms Over Best Available
Existing Methods (1977 Data)

LOCATION BEST AVAILABLE EXISTING METHOD PERCENT IMPROVEMENT
SAME DAY

UPLAND ARB SUBJECTIVE 01.8%  (5.0%)"

DOLA ARB SUBJECTIVE 3.7% (34.0%)

LA HABRA ARB SUBJECTIVE 20.2%  N/A

RIVERSIDE PERSISTENCE 55.2%  (70.0%)

NEWHALL PERSISTENCE 175.8% (83.1%)
DAY~ IN-ADVANCE

UPLAND 2-DAY PERSISTENCE 18.5% (12.3%)

DOLA 2-DAY PERSISTENCE 21.6% (38.7%)

LA HABRA ARB SUBJECTIVE -0.9%2  N/A

RIVERSIDE AQMD SUBJECTIVE 8.2%  N/A

NEWHALL AQMD SUBJECTIVE 6.6%  N/A

*(NEW ALGORITHM SCORE - BEST METHOD SCORE)

BEST METHOD SCORE

**COMPARISON TO DEPENDENT DATA SET.

x 100.
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3.6 EPISODE PROBABILITIES

In order to provide an estimation of the likelihood of an episode,
given a predicted value, an analysis of the prediction error was performed.
Empirical episcde probabilities and confidence intervals were generated by
processing the May through October observed data for the years 1974 - 76
with the output of the prediction algorithms developed previously. Statis-
tics were calculated using two different methods, depending on the magni-

tude of the prediction. If the predicted value was less than 10 pphm,
statistics were generated using the distribution of observed values. For
values > 10 pphm statistics were generated from the distribution of the
differences between the logarithms of the observed and predicted values,
or:

- Ca
X =1n 2= (7]
Where X = error term
Ca = observed value
Cp = predicted value

The reason for using two procedures was to group the Tow-end
predictions into one group (thus not having a discrete prediction value)
and to prevent the errors of the low-end predictions from biasing the
error distributions of the more significant predictions.

In the first case, a frequency distribution of observed values, sorted
by increasing observed values, was computed, resulting in a cunulative
probability distribution. Episode probabilities were easily derived from
this distribution by first finding the probability that the observed value
would be less than or equal to the specified episode va1ue, and then
determ1n1ng the probability that the given value would be exceeded.

For predicted values > 10 pphm, a distribution of the differences
between the logs of the predicted and observed values was computed. This
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distribution was sorted as in the first case, and a cumulative probability
distribution calculated. Episode probabilities and confidence intervals
were calculated for each value of the predicted values from 10 pphm to
41 pphm. From this distribution, the probability of a difference less than
or equal to an episode value was calculated. Episode probabilities were
then generated as above, by taking one minus the interpolated cumulative
probability. Two-tailed confidence intervals were computed using the same
distribution, but instead of interpolating cumulative probabilities from
some given difference value, difference values were interpolated from cu-
mulative probabilities values. For example, for a confidence interval of
80%, differences corresponding to cumulative probabilities of 10% and 90%
were calculated. These differences were then used to calculate low and
high confidence intervals by determing the observed value which would
lead to each difference value. ,

This procedure was repeated for each of the five key sites, and the
remaining six sites on the ARB telemetry system (LENX, LONB, TEMC, RIVM.

MTLE, and FONT.) Separate probabilities were also computed for each of

. the algorithms (same-day, 24-hour, and 30-hour perfect prog.) The

complete set of probability tables is contained in Appendix C.
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CHAPTER 4
—--- - SULFATE PREDICTION

4.1 BACKGROUND
Unlike gaseous pollutants which are continuously monitored, sulfates

are collected over a 24-hour period and then analyzed in a laboratory.
Thus it is not possible to "instant]y“‘determine sulfate concentrations.

- Historically, the AQMD has sampled during a 24-hour calendar day period
(midnight to midnight). This precludes rapid Taboratory analysis. The
ARB, on the other hand, samples from 10 a.m. to 10 a.m., so that the
sample can be taken to the laboratory and analyzed within several hours.
As indicated in Chapter 2, these results are important input for the ARB
suifate prediction equations. Since the sulfate value is recorded for the
date in which the sample is removed, 14 hours (or 58%) of the total sample
period occurs on the day preceding the indicated sample date. Only 10
hours (or 42%) occur on the same date. This is illustrated graphically

in Figure 4.1, which shows the relationship between AQMD and ARB sampling
times. '

4,2 SELECTION OF KEY SITES
As described in Chapter 2, the ARB has developed regression equations
for six SCAB Tocations: Anaheim, Azusa, Reseda, Riverside, Temple City,

and Upland. Since these are the only sites where daily sulfate values are
measured, these will represent the six key SCAB sites. Each of these sites
is near an existing AQMD site, except Temple City, which is somewhat
farther away from the AQMD Pasadena site. Statistics were generatad
comparing ARB to AQMD samples (see Table 4.1). Means and standard
deviations were computed for each site, and for AQMD, ARBSAME, and

ARBNEXT samples. To determine the differences between the samples, a
weighted average of the ARB sampies was obtained based on the proportion-
ality of overlapping sampling time with- the AQMD Samp]es. It can be seen
that the sample differences are very small (+5%) for Anaheim, Azusa,
Reseda, and Riversidé, while Pasadena-Temple City (-18.3%) and Upland
(+45.1%) appear to be large. A t-test was performed to determine the
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Table 4.1 Sulfate Statistics Comparing Midnight (AQMD) to Midday (ARB) Samples*

Number SAMPLE MEAN + o
of @) ®) ©) (d) % DIFFERENCE
Samples AQMD ARBNEXT ARBSAME ARB d=2 ) 100)
- NEIGHTED | &
MEAN

ANAHEIM 16 17.8 + 5.7| 11.8 + 5.8 |11.2 + 5.6 11.6 ~1.7%
AZUSA 16 17.4 + 8.0| 18.4 + 10.0{15.4 + 7.7 17.2 -1.1%
RESEDA 14 12.6 + 5.9} 15.0 + 6.6 |12.6 + 5.8 14.0 +2.9%
PASADENA | '
(TEMPLE CITY)| 56 14.2 + 9.0| 11.6 + 8.7 |11.5 + 7.3 11.6 -18.3%
UPLAND 25 9.1 + 4.5] 13.0 + 9.1 {13.5 + 8.1 13.2 +45.1%
RIVERSIDE 44 11.4 + 7.3| 12.0 + 6.9 |11.8 + 6.9 11.9 +4.4%

*Statistics computed only for cases when both ARBNEXT and ARBSAME data were
available for comparable AQMD sample (May-October, 1976-1977).

stances sample sizes are small due to intermittent nature of both AQMD and
ARB sampling.

In same in-
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significance of these differences. From these analyses (shown in Table 4.2),
it can be seen that the Temple City-Pasadena differences are indeed signif-
icant, probably due to the distance between these sites. For Upland, the
difference between AQMD vs ARBSAME is only marginally significant. (The
Tack of significance at Upland compared to Pasadena-Temple City is due to
a smaller sample size for Upland.) It is difficult to explain the
phenomenon at Upland, since monitoring locations are within two miles of
each other. '

It should also be noted that one outlier was eliminated from the data
bases for Upland and Riverside. This occurred on September 9, 1976, for
both locations. The following 1ist illustrates the sulfate values
reported on that date:

Upland: AQMD  30.6 (ug/m)
ARBSAME 6.8
ARBNEXT 1.4

Riverside: AQMD 44.3 "
ARBSAME 1.5 "
ARBNEXT 4.9

Fontana: AQMD 7.9 "
Chino: AQMD 6.8 "
San Bernardino: AQMD - 14.0
Temple City: ARBSAME 7.9

ARBNEXT 2.5 "

There are no obvious reasons for the inexplicably high values at Upland
and Riverside AQMD samples. A check with the AQMD Eastern Zone did not
reveal any additional information (e.g. the sample was not collected for
more than 24-hours), nor did an examination of meteorological factors
reveal any unusual events. Hence, these data were removed as outliers.
(Scatter plots are given in Figures 4.2 and 4.3 which show the extent of the
outliers.)

With the outliers removed, equations for the AQMD sampling times were
generated using regression techniques. These are summarized in Table 4.3.
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Table 4.3 Predictions of AQMD Samples from ARB Samples

STATION EQUATION N R_ R SE
ANAHEIM AQMD = 0.59 ARBNEXT + 0.44 ARBSAME - 0.1 16 0.93 0.87 2.2
AZUSA AQMD = 0.53 ARBMEXT +‘0.40 ARBSAME + 1.4 16 0.98 0.97 1.6
RESEDA AQMD = 0.52 ARBNEXT + 0.43 ARBSAME + 0.3 14 0.95 0.91 1.9
PASADENA

(TEMPLE CITY) AQMD = 0.67 ARBMEXT + 0.45 ARBSAME + 1.2 56 0.97 0.93 2.4
UPLAND* AQMD = 0.31 ARBNEXT + 0.16 ARBSAME.+ 2.9 25 0.87 -0.77 2.3
RIVERSIDE* AQMD = 0.65 ARBMEXT + 0.25 ARBSAME + 0.6 44 0.83 0.69 4.2

=
[ I I ]

*QUTLIER REMOVED Sg

Number of samples
Correlation Coefficient
Variance explained
Standard error of the regression
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Summary statistics are also shown. It is interesting to note that the
equation coefficients for most sites are in the approximate proportionality
of the sample overlap. Thus, given today's ARB sample value (persistence),
and the ARB predicted value for tomorrow, the AQMD sample can be predicted
accordingly.

4. 3 METHODOLOGY
Due to the excellent sulfate verification results using the ARB

equations (see Chapter 2), it was apparent that the most important improve-
ment would not be to regenerate new sets of equations, but rather to
diagnose the existing equations for weaknesses, and to modify them appro-
priately.

An analysis of the prediction errors was conducted by initially sorting
the magnitude of the error by the persistence term (and noting the date).
This allowed us to analyze the nature of the error and relate the over-
prediction/underprediction to meteorological variables. For example,
moderate underpredictions at the Tew end (i.e. <15 ug/m3) were nat as
important as moderate underpredictions elsewhere (i.e. >15 ug/m3), in which
epiéode conditions would not be correctly predicted. In particuiar, this
procedure allowed us to identify conditicns in which the prediction equa- .
tion for Upland would "blow up" (i.e. predicted values would get very high).

On a case-by-case basis, we found that the most significant errors
occurred under conditions with large inversion AT's (the change in tempera-
ture from the inversion base to the inversion top). Modifications to the
equations for Upland, Riverside, and Reseda were constructed based, in
large part, on the effects of the AT. Table 4 4 summar1zes these results.

For R1vers1deﬂnhod1ffee£;5ns are only necessary for AT > 10 {(the criti-
cal value necessary to implement the modification). In these cases, the
predicted value 1s increased 1 ug/m3 for every degree the temperature is
greater than 8°C (the adjustment value). In the same manner, for Reseda, the
critical AT value is 8°C, and adjustment value is 10°C. Note that (for Reseda)
it is possible to reduce the value of the original predictions by as much as
2 ug/m3. Also, in order to reduce underpredictions under certain inversicn
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Table 4.4 Modifications to the ARB Sulfate Equations

1.

2.

3.

RIVERSIDE:

RESEDA:

UPLAND:

131

RIVRyop = RIVRpy + k(AT - 8.0)

0 if AT < 10

where k= {] if AT > 10

RESDMOD = RESDEX + k(AT -.10.0)

0 if AT< 8

where «= {1 if AT >8

NOTE: IF INV. BASE: 14 <1IB <20
THEN USE MAX' {RESD} CONTINUITY

AZUS

+ Qe (AZUSEX - 1.0)

UPLAyop = X[RIVRysn + (4T-6.0)] + -m(UPLALy)

0 if AT <10
where =
1if AT > 10
{1 ifAT <10
2,=
0 if AT > 10
. {o if (AZUSgy - UPLAEX) <0
1 if. (AZUSpy - UPLAgy) > 0
) :1 if (AZUS - UPLAEX) <0
0 1f (AZUS;y - UPLA) > O

EX) -
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conditions, it is necessary to substitute Azusa persistence in the original
Reseda equation. -

Results for Upland were more complex, primarily due to the need to
prevent the "blow up" feature of the existing equation. There are basi-
cally three terms in the modified equation. The first term, 1ike the
adjustments for Riverside and Reseda, are based on a critical AT > 10°C.

In this case, however, the adjustment is made for the Riverside modified
equation. Since the Riverside equation has Upland continuity as one of.
the input parameters, it is physically sensible that the best results were
achieved with this modification. In essence, it allows the predicted
Upland value to be based on Upland persistence. The second term (for
conditions AT < 10°C and Azusa > Upland) uses the existing Upland equation.
The third term prevents the "blow up" condition by not allowing the pre-
dicted Upland value to exceed the predicted Azusa value.

4.4 VERIFICATION -
Using the verification techniques described in Chapter 2, method

scores were compiled for each of the six sulfate prediction sites. These
are given in Table 4.5. Also shown, in Figure 4.4, are the probability of
detection/false alarm rate scores (P-Scores) for each of the sites, with
directional improvement over one-day persistence indicated. Note that

for Temple City, Anaheim, and Azusa, the improvement by the original ARB
equations was very good; hence, modification efforts to improve these
algorithms were not able to substantially improve these predictions. For
Reseda, Upland, and Riverside, the ARB equations provided only marginal
jmprovement over persistence. The addition of the modifications substan-
tially improved the prediction capability for each of these sites. The
greatest improvement occurred in the P-scores and a better ability to pre-
dict within 2 ug/m3 of the actual value.

A comparison to one-day persistence is given in Table 4.6. For each
site, the improvement over persistence is at Teast +0.2, which is at least
as good as every prediction algorithm for oxidant, except Upland and
Newhall (same-day).
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Table 4.5 Overall Sulfate Prediction Rating

Method
PERFECT
ANAHEIM
Persistence
ARB Equation
AZUSA
Persistence
ARB Equation-
RESEDA
Persistence
ARB Equation
Modified Equa-
tion
RIVERSIDE
Persistence
ARB Equation
Modified Equa-
tion

TEMPLE CITY
Persistence
ARB Equation
UPLAND
Persistence
ARB Equation

Modified Equa-
tion

*Best Method

100

94
97

91
96

93
96

98

93
92

95 .

93
96

92
95

96

61
41

66
44

54

38

34
50

34

30

64
43

49
39

36

13
38

25
38

20
" 28

45

28
32

46

14
33

25
34

42

(May-Oct 1977)

+ B
100
43
62

40
84

30
20

70

44
43

65

46
87

40
40

71

Rating =
= Rating Perfect Rating
300
89 .297
156 .520*
90 .300
174 .580*
85 .283
106 .353
179 .597*
115 .383
133 .443
176 .587*
89 .297
153 .510*
108 .360
130 .433
173 577*
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Table 4.6 Comparable Prediction Scores
For Each Method versus One-Day Persistence

L.

. Perfect Method 1TDay
Location R?E&?g Bg%%gg_ Persistence gg?g?€;b1e
ANAHEIM (1) 300 .520 .297 = +.223
AZUSA (1) 300 .580 .300 = +.280
RESEDA (1) 300 .353 .283 = +,070
RESEDA (2) 300 .597 .283 = +,314
RIVERSIDE (1) 300 .443 . 383 = +,060
RIVERSIDE (2) 300 .587 .383 = +.,204
TEMPLE CITY (1) 300 .510 .297 = +,213
UPLAND (1) 300 .433 .360 = +.073
UPLAND (2) 300 .577 .360 = +.217

(1) ARB Equation

(2) Modified Equation
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It should be noted that only one year of data (1977) was available
for the six monitoring sites; hence the verification results are based on
a much smaller sample that of oxidant.

4,5 EPISODE PROBABILITIES

Empirical episode probabilities and confidence intervals were com-
puted using the same techniques as described in section 3.5, except that
basinwide maxima were used instead of site-specific probabilities. These
are given in Table 4.7. (Days falling in the "filtered" category were
treated separately.) Thus, if one takes the maximum sulfate value as
generated by the equations/modified equations, a probability of an episode
(> 25 ug/mB) can be obtained. For example, a maximum sulfate prediction
of 24 ug/m3 has a corresponding 53.8% probability that the observed value
will be greater than 25 ug/ms.

4,6 THIRTY-HOUR PREDICTIONS

The previous modifications to the ARB equations were site specific
predictions after today's sulfate value (i.e. the persistence term) is
known. To provide additional lead-time for the purpose of assessing the
sulfate potential before the persistence term is available, regression
equations were generated using basin-maximum sulfate data versus key eariy-
morning meteorological variables.

As in the 24-hour predictions, a "filter" was constructed to eliminate
those days in which the 1ikelihood of an episode (>25 ug/m3) was quite Tow.
From the unfiltered data, linear, log-linear, and log-log regressions were
run. The differences in the results were negiigible, so the linear case
was retained. To add greater predictability, output from the 24-hour LFM
500 mb progs were used as predictors of several key meteorological variables.

The results are given below: _ "

SOZ(basin max) - 0.56 (LAXIDT4) + 0.22 (BASNFMY)
+ 1.73 (LAXITT4) - 0.74 (LAX8TMAY)

+ .0006 (LAXIBH4) - 0.19 (SANSHTZP) - 0.21 (OAKSHTZP)+ 20.3



137

9°1s
6°6Y
2 9y
92°9%
6°%Y
2%y
2°LY
6° 6%
2°8¢%
9°9¢
6°%¢
£7¢%
9°1¢
6°62
£°82
9°9¢2
6°%¢

A1)

-8l
s° 21
6°91
£°9¢
2°St
st
styi
6%t
£°5l
221
[
S° 4L
6°0t
£°01
L°6
0*6

—ee %56 ~e-

s°8y 92z
6791 212
¥osy 6702
§'gy  2°02
2°2y  stel
170y sl
165 L9l
si% £°Li
a" 98 9°91
vouE 6L
6°25  2°st
£°1E 9Tyl
1062 2°5t
2*92  0°sl
9°9z 521
0952 9°11L
s°52 80l
——- %06 ---

9°yy  2°s2
sy yovz
by 9052
£°0y  ¢°22
B 95 6712
yels  1e12
6°S§  £°C2
6°95  Sv6t
Lss 27wt
9°1E  6°Lt
o0 1e2d
ge92  2-9l
£°22 951
6°s2  9°vi
vewz 874
0°gz  0°st
9°1z2  2°21
eme %08 ---

STIVAYIALNT FINICTIINDD

ALIlIavdodd
FAUSIdI

SNOTANHIAISTIY HO¥YI TWWHON 907 WOdd GIAIHIQ

(424
2e?
2de
1437

19NV Y
NL Tvinld

S|RAABIU] 25USP}IUO) pUe S313)1Lqeqodd Bposidy Ledtdiduz /'y 3lqel

(= ] e

b vy

e

aisn
3INVH

Lot omr 0

33
“ue
t6d
8z
24
"9
T4
4
"%l
"ee
“ie
‘02
“61
*3t
Al
vl

‘st

Q34417114

INIYA
q113103ud




138

where:
LAXIDT4 = LAX 14Z 1nvers1on AT (°C)
BASNFM4 = Yesterday s basin-max sulfate (ug/m )
LAXITT4 = LAX 14Z inversion top temperature (°C)
LAXSTMAY = Yesterday's LAX 850 mb 14Z temperature (°C)
LAXIBH4 = LAX 14Z inversion base height (ft)
SAN5HT2p = Predicted 24-hour 12Z SAN 500 mb heights
from LFM Prog (10m - 5000)
(i.e. 5860 m represented by 86)
OAK5HT2p = Predicted 24-hour 12Z OAK 500 mb height from LFM

Prog (10m - 5000)

The equation is used on days which are not filtered according to:

Predict <25 ug/m3 if:
(1) LAX 14Z inversion base is:
(a) surface
(b) >5000 ft (includes "no inversion")
(2) LAX 14Z inversion AT is <2°C

0f the 177 cases (during 1977) used in the equation development, 49
were filtered. For those 49 cases, the average basin-max sulfate value
on the following day was 9.8 ug/m with a maximum value of 22.0 ug/m .
Thus no episode conditions occurred on the day following the filtered
condition. For the remaining 128 cases, 12 out of 24 episodes were
correctly predicted for a 50% probability of detection with only 6 false
alarms. The overall verification is as follows:

N Te  10e . T2, p_ _ Total

. - 2t s = =

(177) 89 54 31 46 112

The verification results are not as good as the 24-hour site-specific
equations, but are appreciably better than one-day persistence. Therefore,
this prediction algorithm will provide the ARB with an objective method

for preliminary basin-maximum sulfate potential based on early morning
data. '
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CHAPTER 5
SULFUR DIOXIDE PREDICTION TECHNIQUE

5.1 INTRODUCTION

5.1.1 General Methodological Overview

The ambient concentration of 502 is affected by both SO2 emissions and
meteorologically-induced dilution and dispersion. Preyious S0, models
concentrated on available S0, emissions data (Chapter 2), simulating
occurrences of high SO2 levels for which emissions data were unavailable.
The goal of this project was to generate real-time meteorologically-based
SO2 prediction algorithms capable of predicting SO2 better than either
persistence or climatology alone, but not requiring detailed real-time
emissions data, which are generally not available.

The meteorological dispersion of an emission from an identified source
can be expressed by the vertical and horizontal dispersion of the emissions.
In the SCAB, vertical mixing is often Timited by a persistent marine inversion.
Inwgenera1, the base of the inversion acts as a-1id, defining the height of
the layer in which a pollutant mass (an S0, plume) can be mixed. The

~ strength of this 1id is expressed by the intensity of the inversion (i.e.,

the change in temperature between the base and top of the inversion). The
concentration of SO2 downwind is inversely related to the amount of vertical
mixing.

Lateral dispersion is basically a function of the wind-driven dilution
and gradient forcing - both thermal and pressure. The wind direction and
speed are key variables that define potential areas affected by emissions
from a given source or group of sources. Pressure and thermal gradients
act as forcing mechanisms for the wind field and indicate possible stagna-
tion situations.

A1l parameters in the data base (described in Chapter 2) were used as
possible predictors. Relationships between upwind indicators and selected
local variables were examined to establish any clues in the changes of
small-scale features (e.g. the inversion base height), and synoptic scale
features (e.g. a Santa Ana wind condition), all having potential effects
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on tomorrow's 302. By combining the contributions of both the ‘'long range
and local met variables, a compilation of the most important meteorological
predictors of 302 was created.

This section of the report details the methods to identify the best and
most probable meteorological predictors of SO, and to establish a real-time
set of forecast algorithms. An evaluation of the basinwide distribution of
SO2 concentrations together with a verified prediction scheme will also be
presented. To evaluate the contribution of emissions data for the forecast
algorithm a separate case study was performed to determine the influence of
the Haynes and Los Alamitos power plant emissions on the ambient 502 Tevels
at Los Alamitos.

5.1.2 Los Angeles 802 Distribution

In the Los Angeles basin, SO2 daily maximum one hour average concentrations
typically range from near 0 to approximately 20 pphm. Values above 20 pphm
are rare and values above the one hour maximum standard of 50 pphm have not

been recorded in several years. Therefore, the objective of these 502 predic-
tion algorithms is to detect days whose 1-hour average max concentrations
exceed 10 pphm. This threshold was chosen because a combined episode
condition exists when both SOZ'and OX average concentrations exceed 10 pphm
in the same one hour period.

Ambient levels of SO2 reflect transport from source (SO2 emission)
areas to receptor areas. The potential for high 502 levels varies within
the basin, as shown by the spatial display of mean one-hour max 502
isopleths (Figure 5.1). The largest concentrations occur in and downwind
of the 0il refineries and power plants dotting the coast south of LAX. The
second area of high 502 is Fontana, where emissions from steel industries and
_ power plants are high. Also, since Fontana js a high-ozone site, the 1ikelihood
of combined oxidant/sulfur dioxide episodes is greater there than for the
coastal sites. By relating the regional values of SO2 to the values
observed at Fontana and Lennox (for the Coast) and a Basin-Max, a basic
network of 502 prediction was established.
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The main emphasis of the 502 prediction development was to predict
concentrations at Fontana and Lennox, each of which represents one of the
two problem areas. Other stations measuring 302 were linked to Fontana,
Lennox or the Basin-Max by means of regression analysis. As will be
discussed later, some stations with persistently low values were better
predicted by climatology than any other methed.

5.1.3 Basinwide Distribution

Initially, to determine those sites with significant SO2 values, an
examination of the concentration distribution for each station was performed.
Stations displaying lower values of observed 502 were examined for the use
of either persistence or climatology as a prediction method. Other stations
showing lower values of SO2 (under 10 PPHM with occasional higher values)

were examined to see whether a regression eﬁdation to the predicted values
of Lennox and/or Fontana was necessary for good prediction accuracy.

Results showed that it was necessary to relate 502 at Long Beach, Lynwood, |
La Habra, Los Alamitos, Whittier, -Costa Mesa and Anaheim to the predicted
values of SOz'at Lennox and Fontana.

A review of the individual daily max SO2 values and the monthly average
of the max concentrations indicated that several stations never experienced
values of SO2 equal to or greater than 10 pphm for the three years of the
study period. Since the evaluations of the prediction accuracy were split
into categories where 10 pphm acted as the initial threshold for Reseda,
Pomona, Pasadena-Walnut and Riverside-Rubidoux, the use of climatology
as a predictor achieved 100% categorical prediction accuracy by predicting
zero exceedance of 10 pphm threshold. Monthly means of the daily max
concentrations were often between 1 and 3 pphm while few values exceeded
5 - 6 pphm. A majority of the 502 values for each month fell within *+ 2
pphm of the mean. An estimated percentage of absolute error of prediction
was also low. In general for these stations either climatology or persistence

would act as the best predictor. Improvement over these algorithms would be
slight, if any.
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Stations exhibiting occasional SO2 concentrations exceeding the
10 PPHM threshold included: Newhall, West L.A., DOLA, Azusa, and Burbank.
These stations experienced daily max 502 concentrations ahove the threshold
less than 6 times over the four year period 1974-1977. Climatology achieved
nearly perfect prediction_accuracy with a majority of predictions falling
within + 2 pphm of observed.  Persistence was less effective because of
the rarity in the occurrence of back-to-back days having SOZ 1 hr max concen-
trations > 10 pphm, :

Stations not using climatology as a prediction method were related to
either Lennox or Fontana by means of regression. Table 5.1 is a complete
1ist of stations, their corresponding prediction methodology, and set of
regression equations relating each station to a combination of forecast
SO2 values including Fontana, Lennox and the Basin-Max.

5.1.4 Prediction Algorithms )

Prediction algorithms for Fontana, Lennox and the Basin-Max, consisted
of same day, same day (8-11 A.M.), 24 hour and 30 hour forecasts of SDZ.
Two main statistical methods were used to determine valid forecast algorithms:
stepwise multiple regression and computer aided pattern recognition (AID).
Empirical techniques utilizing individual expertise including point classifi-
cation systems were also implemented. In each case, the 1974-76 502 data set
was tested against independent meteorological variables and persistence for
two separate seasons - summer (May - Oct), and winter (Nov - April). The
analysis resulted in a series of algorithms having distinct prediction
capabilities. |

In Fontana, the daily 1-hr average max concentrations of SO2 often
coincide with the 1-hr max between the hours of 8 A.M. and 11 A.M. The
correlation coefficient between the two max hourly values is approximately
0.94. As a result, same day prediction algorithms were focused upon
prediction for the (8-11) A.M. period.

The significance of forecasting S0, for the (8-11) A.M. period is to
determine the potential of a violation of the combined 302 - oxidant episode
criteria. Oxidant values are building up during this period while SO2 is
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Table 5.1 502 Prediction Equations for SCAB éites as Functions
of Key Predictor Sites ‘

Station

DOLA

LA HABRA
BURBANK

WEST L.A.

LONG BEACH
NEWHALL

RESEDA

PASADENA

AZUSA

POMONA

WHITTIER
ANAHETM

COSTA MESA
LYNWOCD

LOS ALAMITOS

SAN BERNARDIHO
RIVERSIDE/RUBIDOUX
SANTA ANA CANYON

Prediction Equation

DOLA = 0.18 LENX +
LAHB = 0.27 BASN +
BURK = 0.13 LENX +
WEST = 0.15 LENX +
LONB = 0.49 BASN +
NEWH = 0.05 LENX +
RESD = 0.06 LENX +
PASD = 0.10 LENX +
AZUS = 0.14 LENX +
POMA = 0.12 BASH +
WHTR = 0.43 BASH +
ANAH = 0.22 BASN +
CNST = 0.19 BASN +
LYHD = 0.30 LENX +
LSAL = 0.94 BASN -
SNBD = 0.15 FONT +
RIVR = 0.20 FONT +
SACN = 0.14 BASM ~

0.12
0.18
0.09
0.05
0.07
0.03
0.03
0.06
0.07
0.13
0.22
0.03
0.14
0.15
0.25
1.51
0.08
0.07

BASN

LENX -

BASN
BASN
LENX
BASN
BASH
BASN
BASH
LENX
LENX
LENX
LENX
BASH
FONT

LENX
LENX

o+ ok o+ + + + + o+ + o+

.19

.70
.30

LENX - 6.42

Number 2 Standard
Cases: N R R Error
921 0.57 0.32 1.28
921 0.59 0.35 1.94
921 0.44 0.19 1.29
921 0.46 0.21 1.13
921 0.64 0.41 2.41
1057 0.20 0.04 1.12
1057 0.35 0.12 0.79
1057 0.50 0.25 0.85
1057 0.50 0.25 1.07
1057 Q.56 0.31 1.13
720 0.65 0.43 2.43
720 0.46 0.21 1.77
720 - 0.48 0.23 1.90
720 0.62 0.39 1.62
464 0.72 0.51 2.83
527 0.32 0.10 1.62
475 0.56 0.31 1.22
161 6.51 0.27 0.94
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generally peaking. Although oxidant will usually peak during the early
afternoon, it often exceeds 10 pphm during this period, causing the
possibility of a violation.

5.2 SAME DAY FORECASTS

Same day forecasts were produced for the two key stations (Lennox and
Fontana, 8-11 A.M.) and for the Basin-Max.*\AdditionaT same day forecast
algorithms were developed for Whittier and Los Alamitos. For Fontana and
Lennox, AID-created decision-trees produced the best forecast algorithms.
Although the decision tree-analysis gave a discrete pollution prediction
as opposed to the continuous prediction capabilities of regression analysis,
it proved to be an adequate method of forecasting 502.

An empirically derived classification system was determined to predict
the Basin-Max while regression analysis was used as an alternate prediction
system for Lennox. The prediction verification scores will be presented

in Section 5.2.3.

Key variables used by the different algorithms include persistence
and predicted values of Upland oxidant for the Fontana algorithms (both
seasons). Lennox decision trees depended heavily upon persistence and
LAX inversion variables. The Basin-Max algorithm was based solely upon
the values of the 850 mb and 950 mb temperatures and persistence.

5.2.1 Final Forecast Algorithms
Presented in this section are the final forecast algorithms developed
for Lennox, Fontana and the Basin Max.
(1) Lennox
(See decision trees Figure 5.2 {summer) and Figure 5.3
(winter).)
(2) Fontana
(See decision trees Figure 5.4 (summer) and Figures 5.5
and 5.6 (winter).)
3) Basin-Max
- A1l Year .
BASNSMO = ,5 (L5 (LAX8TM4 + (LAXSDIF + LAX9DIF)) + BASNSMY)
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SO
YES ) A PRBG {PPHM)
LAXOTHA LENXSHY LAXIDTE < 2 1
() »18 (7)>6 (8) l
Ty © o SANWCT INW7RIE2 — 1 10
(8) < =3.0 (9) 340
. LAXIBHA —1 10
HO (8) < 500
| 6
l LABAWD7 8
Q- 30
(6) | 5
LAX8MA4 - 8
(6)> 10
l 8
LENXSHY LAXIBH4 < 1000 6
(4) >4 (3) | .
4
3
(NOTE: Humber encircled, le (7). indicates predicted value if data are not available
for further splits.) ‘
Where: LAXSTM4 - 7 a.m. 950 mb temp at LAX {°C} ~
LEHXSMY - VYesterday's S0 1-hr max at Lennox {pPHN)
LAXIDT4 - 7 a.m. inversion top’temp - base temp at LAX (°c)
LAXEM#4 - 7 a.m. 850 mh temp - surface temp at LAX (°C)
SAHMC7 - 7 a.m. pressure gradient between SAN - WC (mb)
MW7RH2 - 700 mb relative humidity at INM (%)
LAXIBH4 - 7 a.m. LAX inversion base height {Ft)
LGBAD7 - 7 a.m. surface wind direction at LGB
Figure 5.2  Same Day Summer 802 Predictions for Lennox, R2 = 0.5]
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S0, PROG (PPHM)

YES ————tn
LENXSHY 12
> ?S
LAXBM@4 — LAXIBC4 VaGauDn2 OAK5HT2 13
- (8) > -2 > 2500 (9) 270-360 (n) > 572
(7) : L 8
{7) RBLTPHZ
> =3.0 10
| 5
SUNPPG 7 — VYBG D2 LAXQWV?7 — VBG3WD2 e SANWMC? —t 10
(6) > 10.0 (7)60-360 (7) <4 > (8) 60-300 (9) > 9.0
| L
LENXSHY [
{6) »>'10
6
. 5
5
LAXIBH4 4
(3)< 5000
L 2
(NOTE: Humber encircled, i{e (7), indicates predicted value 1f data are not availahle
for further splits.)
Where: LENXSMY - Yesterday's l-hr SO2 max at Lennox (PPHM)
LAX8M04 - 7 a.m. 850 mb temp-surface temp at LAX {°C)
LAXIBC4 - 7 a.m. tnversfon thickness at LAX (Ft)
LAXIBH4 - 7 a.m. LAX inversion base height (Ft)
VBGAID2 - B850 mb wind direction at VBG ?IZ 2)
OAKSHT2 - 500 mb helght at OAK - 12 Z (10 M)
LAXOWV7? ~ 7 a.m. surface wind velocity at LAX (RPH)
SAMIMC? - 7 a.m. pressure gradient between SAN-WMC {mb)
RBLTPHZ - 7 a.m. pressure gradient between RBL-TPH mb)
SUMOPG7 - £ 7 a.m. pressure grad'lem_:s: LAX-DAG, SAN-LAS- SDB-VCV (mb)
. . . . 2
Figure 5.3 Same Day Winter 802 Predictions for Lennox, R™ = 0.52
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S0» PROG (PPHM)

FONTSMY FONTZ!D YUMPLUD4 14
>8 (9) =18 {11)310 > 25
' 6
5
Ho
t LAXIBHA FONTSMY 6
(4) < 3380 (5) > 41
: 2
2

(NOTE: Number encircled, le (9), indicates predicted value if data are not
available for further splits.)

Where: FONTSMY
FONTZND

LAX1BH4

- Yesterday's 1-hr S0 max_at FONT (PPHM)
- Today's (predicted - observed) ozone 1-
YUMHD4 - 4 a.m. surface wind direction at YUMA
- 7 a.m. LAX inversion base height (Ft)

hr max at FONT {PPHM)

Figure 5.4  Same Day .Summer S0, Predictions (8-11 a.m.) for

Fontana, R% = 0.73
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YES — o

S0, PROG (PPHMN)

UPLAZMG INW7RH2 LAXIBCA n
> 10 (5) > 20 (8) < 2000 :
l 5
LAXITT4 5
NO (4) > 15.0

l | 3
LAXGWV? 4

(2) 212
L 2

HOTE:

Where:

Figure 5.5

Number e?circled. je. {5), indicates predicted value if data are

not avail

able for further splits.).

UPLAZMS - Today's predicted 1-hr max ozone at UPLA {pPHM)

INZRHZ - 700 mb relative humidity at INW %)

LAXIBC4 - 7 a.m. LAX inversion thickness top height - base height (Ft)
LAXITT4 - 7 a.m. LAX inversion top temp

LAXQWV? - 7 a.m. surface wind velocity at LAX {mph)

Same Day Winter SO, Predictions (8-11 a.m.) for

Fontana with LAXIBHA # 110, R% = 0.69
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YES 50,
' 2206 ! PPHM)
SDBOTM7 ___—  INW7RM2 LAXTPH7 7
> 50 {(5) >30 (6) > -8.0 ‘
L 4
| .
NO
l ONTQVZ7 - UPLAZM) 7
(3) <2.0 (4) >20
L 3
2

{NOTE: The number encircled, le (5}, indicates predicted value if data are not available
for further splits.)

Where: SDBOTH7 - 7 a.m. surface temp at SDB (°F)
ONTOVZZ? - 7 a.m. surface visibility at ONT (miles)
INM7RHZ - 700 mb relative humldity at IMM, 122 (%)
UPLAZM - Today's predicted 1-hr max ozone at UPLA {PPHM)
LAXTPH? - 7 a.m. pressure gradient between LAX - TPH (mb)

Figure 5.6  Same Day Winter 502 Predictions (8-11 a.m.) for

Fontana with LAXIBH4 = 110, R% = 0.79
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where LAXS8DIF = LAX8TM4 - LAX8TMY

LAX9DIF = LAX9TM4 - LAX9TMY

LAX9TMY = 7 A.M. 950 mb Temp at LAX (°C)
1LAX8TMY = 7 AM. 850 mb Temp at LAX (°C)
BASNSMY = Yesterday's 1-hour max SO2 (pphm)

10.0 = 10.0

NOTE: (LAX9DIF + LAXSDIF) Z
< =10.0 = -10.0

Alternate Lennox Same Day Equations

Summer Base Ht = 110 N=38 R=0.65 SE=2.63

LENXSM@ = = 0.05 LAXIDT4 +0.30 LENXSMY - 0.17 SUMBPG7
+ 0.16 LAXPTM4 +0,28 LAXSM@4 + 0.30 (LAXDWV4 + LAXOWY7)
+1.81 ¢
Summer Base Ht # 110 N=440 R=0.60 SE=2.09
LENXSM@ =  0.38 LENXSMY - 0.00045 LAXIBH4 - 0.07 SUM@PG7 +4.63
Winter Base Ht = 110 N=229 R=0.52 . SE=2.87 -
LENXSM@ = 0.36 LAX8Mp4 - 0.18 SUM@PG7 +0.20 LENXSMY

- 0.00022 LAXIBC3 + 5.83
Winter Base Ht # 110 N=224 R=0.65 SE=2.04
LENXSM@ = 0.15 LAX8M@4 - 0.18 (LAXQWY4 :+ LAXDWY7)
2

- 0.00024 LAXIBH4 + 0.17 LENXSMY - 0.049 SUMPPG7
+ 6.64

Where: LAXIDT4 - 7.a.m. LAX inversion top temp - base temp (°C)
LENXSMY - Yesterday's 1-hour max SOp at Lennox (PPHM)
SUM@PG7 - ZI15Z pressure gradients: LAX-DAG, SDB-VCV,
SAN-LAS (mb) ‘
. 850 mb temp - surface temp at LAX (°C)

LAX8MP4 ~ 7 a.m.

LAXQTMA - 7 a.m. surface temp at LAX (°C)
LAXQWY4 -~ 7 a.m. surface wind speed at LAX (MPH)
LAXQWV7 - 7 a.m. surface wind speed at LAX (MPH)
LAXIBH4 - 7 a.m. LAX inversion base height (Ft)
LAXIBC3 - 7 a.m.

24 hour LAX inversion base change (Ft)
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- 5.2.2 Development of the Forecast Algorithm

This section is a chronological review of the development of the
final forecast a1gorithmsf Because of the site specific nature of SOZ’
differing procedures were used to determine potential prediction algorithms
at the various sites.

Lennox ]

Initially for Lennox, high SOz'days (1 hr maxima > 10 PPHM) were
separated from the dependent data set distribution. Using the 502 values of
this data subset, a manual examination of 802 data versus meteorological
parameters was conducted to gain a "faal" for the situation. By fitting
302 values to various meteorological parameters and persistence a 1imited
prediction algorithm was made. Since the effort was geared to high 302
values, it tended to overpredict when applied to the full data set.
Although several met variables showed definite promise as possible
predictors, the number of potential predictors was too large for a
continued manual fitting.

Regression analysis was then used to predict SO2 for same day algo-
rithms. SO2 variables were related by stepwise multiple regression to
locally selected parameters based on known success as oxidant predic-
tion. (The oxidant prediction variables represent a statement of the
meteorological potential for high pollution on a given day.) Then, Tocal
wind velocity variables and specific pressure gradients were added, step
by step to improve the developing algorithms. The resulting equations
were broken into two sets of categories according to the use of persis-
tence and the presence of a surface inversion for each season.

Among the equations produced by the regression analysis, the cases
which included persistence were the best predictors. The resulting four
equations represented winter and summer predictions for days when the LAX
inversion base height was either equal to 110 ft (surface inversion) or
greater. Using this criterion we were able to stratify the better potential
predictors according to the meteoralogical situation (i.e., with a surface
inversion present, inversion strength variables acted as the best predictors).
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With a series of algorithms being produced it was necessary to
quickly evaluate the prediction accuracy of each model. Two methods of
determining accuracy were to examine the amount of variance explained by
the model and to compare the trends of the predicted SO2 with those of the
observed values.

This method used on the Lennox equations illustrated that for summer
(LAXIBH4 = 110 ft.) the inclusion of persistence increased the amount of
variance explained from R2 = 0.37 to R2 = 0.42. This statistical measure
of increased prediction capacity was substantiated by visible improvements
in the trends of the predicted SO2 compared to the observed values.

To enhance the capabilities of the regression analyses a linear matrix
that related the 502 at Lennox to every variable in the data base was
Created to determine an optimal set of potential predictors. These
variables were combined with selected variables from the previous regres-
sion attempts. For the ensuing analysis, a greater emphasis was also
placed upon the model's prediction sensitivity, with spec1a1 attention
‘focused upon the ability to forecast 502 concentrations equal to or above )
10 PPHM. Additional attention was given to increase the model's ability
to catch significant changes in the 502 distribution.

" Persistence did enhance the prediction capabilities of the previous
equations, however, it tended to cause the equation to underpredict higher
302 values, particularly on significant change days. To increase the
sensitivity of the algorithm, a new series of regression equations was
developed without the input of persistence. The resulting algorithms
predicted with about the same accuracy as the previous equation set.

The results of this analysis tended to confirm some of the pitfalls
encountered with the use of the regression analysis. The regression
equat1on 1s essentially a best fit of a series of inear varfables describing
a predictand. The Lennox regt§s§1on equations accuratg]y predicted SO2

values near the mean of the distribution but generally missed higher
concentrations. Another poor feature of the use of linear regression was
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elimination of many possible key variables that were related to 502
non-linearly. As a result several variables including the wind directions
were eliminated from consideration for the equations.

The next step, therefore, was to use AID to develop decision-tree
algorithms. By scanning the previous attempts at prediction algorithms
as well as the correlation tables, a set of optimal predictors was
established for Lennox. This set included local and synoptic wind condi-
tions in discrete intervals as potential predictors. Persistence was also
included in the development of the AID algorithms. The most important
variables were the difference between the 850 temp and the surface temp
at LAX for the winter and the 950 mb temp at LAX for the summer. In the
winter algorithm the 850 mb Vandenberg 12Z and the 7 A.M. surface wind
directions were also significant, while the surface 7 A.M. wind speed
at LGB contributed to the summer AID tree.

Fontana A

Same-day prediction algorithms for Fontana were determined using a
similar method. A preliminary regression analysis, based solely upon '
meteorological variables, was conducted for both 502 and oxidant to estimate
the predictability of_SO2 relative to oxidant. Results showed that for the
three years, using the same meteorological variables, more variance was
explained for oxidant (R2 = 0.59, for 406 cases) than for S0, (R2 = 0.48 for
212 cases). '

The 802 equations determined from this analysis were not effective as
prediction algorithms. Equations developed were derived using a limited set
of valid data and did not apply when tested against the full data set. The
equations also suffered from an inability to predict values of SO2 greater
than 10 PPHM.

Additional regression attempts were made for Fontana with specific
attention paid to highly correlating linear variables. Using the set of
best Tinear meteorological predictors as well as selected long range
predictors and persistence, various algorithms were developed. In general,
the amount of variance described by this series of equations was reduced
from that of the initial equation (as a result of a larger number of test
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cases to be fit). One of the initial regression equations developed
related 502 at Fontana to long range variables including UCC5HT2,
MFRWMC7, RBLTPH7, and Tocal variables such as SUM@PG7 and SDBEWV7. (This
regression equation achieved an R2 = 0.36, 202 summer cases.) Models
were related to Goth the daily max SO2 and the (8-11) A.M, average. For
all cases, the resulting correlations were poor, with particularly
tnaccurate 502 predictability in the high'range.

Following the failure of the regression analysis to produce a working
algorithm, decision tree analysis was initiated. Initial runs tried to
relate Fontana (8-11) A.M. daily max hourly SO2 (with restriction of 0X >
.10 for that day) to different meteorological variables, For the same-day
trees, a majority of the predictor variables were LAX inversion parameters,
The key variables in the (8-11) A.M. forecast were LAXSTM4, SDBOTM7 and
ONT@VZ7. Only one long range synoptic variable appeared in the trees,
Oakland's 500 mb height change (12Z). '

The inittal decision tree was unable to predict va]ues of SO2
10 pphm. However, the amount of variance explained for the (8-11) A.M.
forecast was relatively low (R = 0.31).

To continue the decision tree approach, a complete survey of possible
predictors was performed to determine an optimal set. Decision trees were
constructed for the two main forecast periods: 8-11 A.M. summer, 8-11 A.M.
winter with the LAX inversion greater than 110 ft., and 8-11 A.M. winter
with a surface inversion. The resulting algorithms proved to be adequate
forecast tools. Minor revisions were made in each algorithm to simplify
the output without losing any resolution in the actual forecast.

The final algorithms explained a high percentage of variance in the
Fontana 802 distribution. The summer algorithm had an Rz = .73, while the
winter algorithms explained 75 percent of the variance.

To determine the same day Basin-Max SOZVtwo major methods were attempted:
regression and an empirical meteorological potential system derived through
interactive analysis.
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The regression analysis produced separate equations for the summer
and winter, each predicting better than persistence. However, the model
predicted consistently low for most values of the Basin-Max. Improvements
over persistence were almost insignificant. The model did predict mid-range
values of the Basin Max accurately, but it was unable to predict the
magnitude of high SO2 concentrations.

As a part of the development of an ox1dant model for Riverside, an -
algorithm was derived expressing the 0Xas a function of the 850 mb _
temperature, the 950 mb temperature, and the differences of those variables
over the past 24 hours. The resulting model produced an accurate forecast
not only for oxidant but for the meteorological potential of pollutants
for that day.  Since the Basin-Max SO concentration is more a function of
a regionwide potential than a sute-spec1f1c local phencmenon, we attempted
to fit the oxidant - meteorology algorithm to the Basin-Max distribution.

Basin-Max oxidant values for average days are generally twice the
Basin Max SO yalues for that same day (approximately 21 PPHM compared to
9 PPHM). By tak1ng one half of the ox1dant forecast base9_§ole1y on the

meteoro1og1ca1 potent1a1 described by ‘the 850 mb and 950 mb temperatures, and

averaging that value with vesterday's Basin-Max, a simple yet highly accurate
model was produced.

The model itself was generally conservative in that it predicted some-
what high for a majority of the cases. The forecast 502 values tracked

the observed values surprisingly well. One benefit of this conservative
model js that in the basinwide distribution most stations' 302 values are
determined by a combination of the Basin-Max and either Lennox or Fontana.

With a conservative forecast possible Tocal peaks will be more efficiently
detected.

5.2.3 Verification Analysis - Same Day Forecasts

5.2.3.1 Verification Against Dependent Data

A1l algorithms were verified against the dependent data set to compare

their forecast abilities against persistence. Table 5.2 presents summer and
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Table 5.2 Overall Same-Day SOZ Prediction Rating

N METHOD Te - 1 + T2+ ¢ + P = R pperere
PERFECT 100 0 100. 100 25 325
DEPENDENT DATA SET: 1974-1976
seasesscacansescsesnactosssestctseres MAY-0CT sescsecscsscessessrsatcseatatcsnacuonsesscose
329 Fontana-persistence 84 26 61. 0 25 144 . .443
543 Lennox-persistence 91 19 71 .0 25 168 517
557 Basin-Max-persistence 73. 29 55 0 25 125 .385 °
266 Fontana (8-11 a.m. algorithm) 96 19 67 40 25 209 .643
434 Lennox . (algorithm) 93 15 83 37 25 223 .686
556 Basin-Max (algorithm) . 75 24 67 23 25 166 511
549 LennoX climatology 93 23 70 40 25 208 .640
333 Fontana climatology 86 30 50 37 25 168 517
. NOV-APR
296 Fontana-persistence 93 23 67 Q 25 162 .498
527  Lennox-persistence 86 26 61 ] 25 146 .449
541  Basin-Max-persistence vl 27 56 0 25 125  .385
216  Fontana (8-11, both '
algorithms) 97 12 38 74 25 272 .837
397 Lennox (algorithm) 30 17 73 35 25 208 .634
456 Basin-Max (algorithm) 71 27 59 36 25 164 .505
537 Lennox climatology 91 -+ 23 64 40 25 197 .606
304 Fontana climatology a6 22 68 48 25 . 215 . 6502
INDEPENDENT BATA SET: 1977
woscss MAY-0CT casa
141 Fontana-persistence 86 32 50 0 25 129 .397
182 Lennox-persistence 97 18 81 25 185 .569
184 Basin-Max-persistence 63 34 52 0 25 106 .326
141 °  Fontana (8-11 algorithm) 83 33 63 26 25 164 .505
184 Lennox (algorithm) 97 15 84 30 0 258 221 .680
183 Basin-Max (algorithm) 73 27 59 15 25 145 .448
‘ NOV-APR seo
179 Lennox-persistence 89 17 73 0 25 170 .523
179 Lennox {(algorithm) 94 18 79 42 25 222 .683
180 Basin-Max-persistence 82 26 66 0 25 147 452
178 Basin-Max (algorithm) 75 24 - 65 4 25 182 .560
* = Best Method I LEGEND R = Rating o

N = Number-of ‘Predictions -

Te= Total Correct (%)
E = Mean Absolute Error (PPHM)

" Tp -8:Correct +2°PPHM (%)

€ = Significant Changes
Correct +2 PPHM (%)

P = 'Score (Climatological

Constant)
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winter verification scores. Model evaluation was performed using the basic
scoring system described in Chapter 2, with one alteration: significant
change days were defined to be days where SO2 increased or decreased

5 pphm from the preceding day. A perfect score for the model was 325 points.
(For all models P=25 (the equivalent of climatology) because concentrations
of 1-hr 502 never exceeded 50 pphm at any station over the modeling period.)

It can be seen that for the three algorithms, improvement was made
over persistence and climatology at each site. - The Fontana 8-11 A.M.
winter algorithm achieved a score of 272, which is 83.7% of perfect.

This represents the best single algorithm developed for any of the
pollutants in this study.

5.2.3.2 Verification on Independent 1977 Data
Ali prediction algorithms except Fontana-winter were evaluated
against 1977 SO2 and meteorological data. The algorithms were evaluated

using all available data. Results of the independent analysis are also shown
in Tabie 5.2,

Similar to the dependent data set, each of the new algorithms
scored substantially better than persistence, indicating that these
methods can be used as effective prediction tools.in subsequent years.
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5.3 24-HOUR DAY IN ADVANCE PREDICTIONS

Twenty-four hour forecast algorithms for Lennox, Fontana and the
Basin-Max were restricted to computer derived decision trees and regression
analyses. The 24-hour forecast algorithms provide an update of the
initial 30-hour forecast. The update forecasts are able to use meteor-
ological and pollution data not available in the morning.

For Lennox and Fontana (both seasons) decision trees produced the
best predictive algorithms. Key variables for the Lennox winter algorithm
include, OAKS5HT2 and persistence, and for the summer algorithm persistence
and the LAXIBH4 were the most important variables. The 24-hour forecast
decision trees designed for Fontana used persistence and predicted oxidant
values for Upland as the key variables for both algorithms.

To produce a 24-hour algorithm for the Basin Max a series of regression
equations were developed. Key variables in the winter equation are
OAKSHT2 and SUM@PG7. Variables weighing heavily in summer equation are
LAXI.BH4 and LAX9TM4. -

5.3.1 Final Forecast Algorithms

Presented in this section are the final 24-hour forecast algorithms:

(1) Fontana
(see decision trees Figures 5.7 -and 5.8.)

(2) Lennox
(see decision trees Figures 5.9 and 5.10.)

(3) Basin-Max
Summer: BASNSM1

-0.00048 LAXIBH4 + 0.078 LAX9TM4
-4.6 LAXDAG3 + 0.13 LAX8TMD

+1.4 SUMPPG7 + 5.6

0.07 OAKSHT2 + 0.14 LAXSTMD
-0.068 SUMPPG7 - 36.9

It

Winter: BASNSM1
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YES o _
S0
.ﬂiﬁ.ﬂmnu)
FONTS8p ——— UPLAZMI  ———  LAXIBTD LAX9TH4 17
>8 > 20 {9) >16.0 (1) <21.0 (15)
1 | ) L 13
VBGalUDg 1
240 > >0 (7)
HO 1 5
l ' LAXSHD4 5
< 0 (6)
l 5
UPLAZMY FONTSBD 7
> 10 {4) > 6 {5)
! 4
3

(NOTE: The number encircled, ie. (9), indicates predicted value if data are
not available for further splits.) '

Where: FONTSBB - Taday's {8-11 a.m.) max S()2 at FONT (ppHM)
UPLAZMI - Tomorrow's predicted 1-hr max ozone at UPLA {PPHM)
LAXIBTG - 1 p.m. LAX inversion base temp (°C)
LAX9TMA - 7 a.m. 950 mb temp at LAX (°C)
VBGSUD@ -~ B850 mb wind direction at VBG 00Z
LAX8MP4 - 7 a.m. 850 mb temp - surface temp at LAX (°C)

2

Figure 5.7  24-Hour Summer SO, Predictions for Fontana, R® = 0.69
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S0 PROG
YES— (PEHM)
LEMXSMD 3 15 12
~—— LENXSM) — LAXGDP3 LAXSTHA 1
0AKSHTZ
5 560 > 6 (5) < 55 (6) 218.0(7)
——— LAXDAG3 — OAKSHT2 . ——1 g
LAXDAG3
) >-3.0(7) > 570, (7)
L 1 s
| : ;
3
5
LAXDAG3 VBGSHC2 LAXQDP3
<1.0(5) —— >4 (6) —— > 40 (6) 7
| ‘ :
, 5
4
3

(NOTE:

Where:

Number encircled, fe.
further splits.)

LENXSM@
OAKSITZ
LAX@DP3
LAXSTMA
LAXDAG3
VBGSHC2

- Today 1-hr max S0, at Lennox (PPHM)

- 500 mb heights at OAK 12:2 (10 m)

= 1 p.m. surface dew point at LAX (°F)

= 1 p.m. 850 mb temp at LAX (°C)

= 1 p.m. pressure gradient between LAX-DAG {mb)

= 24-hour 500 mb height change at VBG 12 Z, (10 m)

(5), indicates predicted value if data are not available for

Figure 5.8 _24-Hour Winter SO2 Predictions for Lennox, R2 = 0.29
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S0
PROG (PPHN)

uPLAZ1 LAXTPHT 9
> 10 < -6.0(6)
LAXIOT4 8
NO (5) 212
‘ SDBQTM3 7
> 60
4
DAGOWV3 HFRIMCT SANWMC3 7
(3) <10 (4) <-3.0 (5) <-6.0
] | - 3

(NOTE: HNumber encircle, ie {6), indicates predicted value if data are not available
for further spiits.)

Tomorrow's predicted 1-hr max ozone at UPLAND {PPHM)

thera: UPLAZMI
LAXTPH7
DAGRUY3
LAXIDTS
SDBOTH3

MFRIMCT |

SAIMMC3

Figure 5.9  24-Hour

7 a.m.
1 p.m.
7 a.m.,
1 p.m,
7 a.m,
1 p.m.

pressure gradient between LAX -TPH (mb)
wind velocity at DAGGETT (mph)

LAX inversion top-bottom temperature (°C)
surface temp. at 5o (°F}

pressure gradient between MFR-WMC (mb)
pressure gradient between SAH-HMC {mb)

Summer SO2 Predictions for Lennox, R2 = .40
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YES e 50> PROG
)
LAXIBH4 _______ LENXSM® . LENXSM@ n
< 1500 * 8 (8) > 14 (8)
LGB'DII'H:‘i VBGSHT 2
>75 (8) ————. <592 (8) 8
o 5
l LENXSHO SUMEPG? 6
>4 (5) <12,0 (6)
L 5
4
LENXSMO LAXIBHS 5
>4 (4) <2000 (4)
.o L &
LENXSMO 3
>2(3)
L 2

(NOTE: Mumber encircled, fe. (6), indicates predicted value if data are not available
for further splits.)

Uhere: LAXIBHA -
LENXSMD -
LGBETMI -
VBGSHTZ -
SUMBPRT -
Figure 5.10

7 a.m, LAX inversfon base height (Ft)

Today's 1-hr max SOz at Lennox (PPHM}

1 p.m. surface temp at LGB (°F)

500 mb height at VBG, 12 Z (10 m)

L 7 a.m. pressure gradients: LAX-DAG, SAN-LAS, SDB-VCV {mb)

24-Hour Winter 502 Predictions for Fontana, R2 = 0.47
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5.3.2 Development of 24-Hour Algorithms

Dacision tree and regression analyses were used to develop valid
24-hour SO2 prediction algorithms. Due to changing meteorology and daily
emission patterns, day-in-advance prediction is less sensitive than same-day
algorithms to changes in 502 concentrations. As a result, the objective
for the 24-hour forecast was merely to predict the potential for high SO2
concentrations.

Fontana

The initial method used to develop a 24-hour forecast was stepwise
multiple regression. First, the set of optimal Tinear predictors was
defined from the correlation matrices. Several regression equations were
formed using combinations of these variables. The most productive equation
related Fontana (FONTSM1) with several afternoon variables: UPLAIMI,
LAXTPH7, MFRWMC7, SDB@TM3. This equation had a correlation coefficient of
R = 0.52. The resulting forecast predicted 502 poorly. Expanded regres-
sion analysis was then abandoned in favor of a decision- tree approach to
derive a working algorithm.

Several key 1inearly and nonlinearly related variables were selected
for the ensuing decision tree analysis. Included were persistence and
Upland's predicted oxidant value.* The decision tree attained a high
prediction rating, explaining 66% of the variance in the 502 distribution,
and was able to predict 502 values greater than 10 pphm.

The summer algorithm showed fair resolution in forecasting 502 values,
outpredicting the 8-11 A.M. same-day decision tree. Differences between
the same day and 24-hour algorithms are that the 8-11 A.M. model was designed
to catch days when SO2 is greater than or equal to 10 pphm in the morning
(losing resolution for higher predictions) while the day-in-advance model
was designed to predict higher values of 802 accurately (to count potential
violation days).

. o
UPLAZM] was used as the predicted value of tomorrow's oxidant
concentration.
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To further increase the resolution of the summer SO2 forecasts the
decision tree was used as a screen for a grouped regression analysis.
This procedure was designed to segregate potential high concentration
days and then produce a forecast based upon their relationships to a
separate set of predictions. This combination of AID and regression is
a form of a forced piecewise linear multiple regression. Since the
addition of regression to AID in this case failed to improve the prediction
resolution significantly, the 24-hour decision tree was only slightly
modified (unnecessary splits were removed to simplify the forecast
algorithm).

Lennox

Methodologies tested to produce a 24-hour prog for Lennox (both
seasons) also included regression and decision tree analyses. Preliminary
regression equations using the optimal set of predictors explained only
20.7% of the variance and could not accurately predict high 302 values.

SOZ 24-hour forecasting, using time series, was also included as a
potential prediction algorithm. A 24-hour model was run and tested
against the dependent data set. Because the algorithm suffered from a
distinct time lag, never catching the start of a trend, it was abandoned
in favor of decision tree analysis.

For both seasons, decision trees predicted high SO2 values somewhat
more accurately than regression. The winter decision tree explained
29.0% (497 cases) of the variance, more than the regression equation.

The summer algorithm explained 42.7% (451 cases) of the variance, as
opposed to 33.1% explained by the regression equation. Both decision
tree (summer and winter) algorithms can forecast high SO2 concentrations,
> 10 pphm.

Basin-Max n

The same-day algorithm designed for the Basin-Max could not be adapted
for a 24-hour prog. As a result only regression analysis was used to
determine prediction algorithms for day-in-advance 502, Initial equations
were determined from a 1imited set of morning and afternocon data, not
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including persistence. The resulting equations were fair (R2 = .19,
summer and R2 = 0.24, winter), with a moderate ability to predict
significant changes. With persistence included in the analysis, the
amount of variance explained was R2
again R2 = 0.24 for the winter.

The final equation set utilized one equation from each set of
regression runs. The summer equation -included persistence, LGB@TM3,

and LAXIBH4, while the winter equation was based upon OAKSHT2, LAXSTM@,
and SUMPPG7.

= 0.24 for 470 summer cases and

5.3.3 Verification of the 24-Hour Algorithms

Table 5.3 gives the verification results for the dependent and
independent data sets. As expected, the 24-hour forecasts of most
models were less accurate than corresponding same-day predictions.

One exception was the 24-hour summer prediction algorithm for Fontana,
which displayed improved capabilities over its same-day algorithms.

While the algorithms for LENX and FONT showed improvement aver
persistence, the Basin-Max algorithms were only marginally better,
especially on the independent test. This is a reflection of the localized
problems in 502 conditions alluded to earlier (i.e. to pinpoint the highest
502 levels is more precise using site-specific algorithms than for the
generalized case).

5.4 30-HOUR INITIAL ALGORITHMS
Thirty-hour forecast algorithms consisted of decision trees for Fontana

and "perfect prog" regression equations for Lennox and the Basin-Max.

5.4.1 Fipal 30-Hour Algorithms
Presented in this section are the 30-hour forecast algorithms.

(1) Fontana
(see decision trees Figure 5.11 and 5.12)
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Table 5.3 Overall 24-Hour 502 Prediction Rating

N = Nember-of ‘Predictions -

Te= Total Correct (%)
E = Mean Absolute Errvor (PPHM)

"7 Tp-siCorrect +2°PPHM (%)
€ = Significant Changes
Correct +2 PPHM %%)

P'=’Score (Climatological

Constant)

N METHOD e 5 108 + T2+ o+ p o= p Megeers
PERFECT 100 () 100. 100 25 325
DEPENDENT DATA SET: 1974-1976
weesces cscesc MAY_OCT hadd L EL LIS T YT LY T T Py Ty P O

329 Fontana-persistence 84 26 61 v} 25 144 .443
543 Lennox-persistence 91 19 71 0 25 168 517
557  Basin-Max-persistence Al 26 62 0 " 28 132 406
166 Fontana (algorithm) 91 18 a4 48 25 230 .708
465 Lennox (algorithm) 93 - 15 82 - 34 25 219 .674
447 Basin~Max (algorithm) 74 . 23 67 18 25 161 .495
333 Fontapa climatology 86 30 50 37 25 168 517
549 Lennox c¢limatology 93 20 70 40 25 208 .640
549 lennox time series 93 17 78 32 25 211 .649

NOV-APR o b
296 Fontana-persistence 93 23 67 0 25 162 .498
527 . Lennox-persistenca 36 26 61 0 25 1486 .449
541 Basin-Max-persistence VA 27 56 0 25 125 .385
225 Fontana (algorithm) - 96 16 80 65 25 250 .769
437  Lennox (algorithm) 32 19 7 42 25 2n .649
403 Basin-Max (algorithm) 75 22 66 36 25 180 .554
304 Fontana climatology 96 22 68 48 25 215 .662
537 Lennox climatology 9 23 64 40 25 197 .606
537 Lennox time series a1 22 70 27 25 191 .588

INDEPENDENT DATA SET: 1977

MAY-OCT ooecanooo&io-.-o'.oa.n .0
1-.41 Fonténa-persistence 86 32. 50 25 129 .397
182 Lennox-persistence 97 18 81 _ 25 185 .569
183 Basin-Max-persistencs 63 34 52 Q 25 106 .326
141 Fontana (algorithm) 87 31 55 29 25 165 .508
182 Lennox (algorithm) 97 14 88 40 25 236 .726
177 Basin-Max {algorithm) 53 42 39 33 25 108 .332

NOV-APR weemseasse . cassssesce
179 Lennox-persistence 89 17 73 0 25 170 .523
179 Basin-Max-persistence 82 26 62 25 143 .440
179 Lennox (algorithm) 89 26 73 38 25 203 .625 .
178 Basin-Max (algorithm) 73 29 50 3 25 150 .462

*=Best Method LEGEND R = Rating
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YEs — S0, PROG (PPHM)

FONTS80 LAXEMD4 14
> 8 (9) <-2

UPLAZMI LAX9TH4 ‘ 14

(8) > 20 (10) > 18.0 ,

l s

UPLAZMF FONTSB®  ——————— PLTOPC? - 9

(4) >10 {(5) > 86 (7) > 1.0 )

l L 5

3

2

(NOTE: Humber encircled, ie, {9), indlcates predicted value if data are not
available for further spiits.)

Where: FONTSB9
LAXaMa4
UpLAZMT
LAX9TM4

~ PLTOPC?

Today’s predicted (8-11 a.m.) SOy at FONTANA {PPHM)

7 a.m. 850 mb temp. - surface temp at LAX (°C)

Tomorrow's predicted 1-hr max oxidant at UPLAND {PPHM)

7 a.m. 950 mb temp at LAX {°C)

7 a.m. average 24-hour pressure changes at WMC,RNQ,TPH {mb)

Figure 5.11  30-Hour Summer 302 Prediction for Fontana, R2 = 0.66
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PROG_(PPHM)

SANIMCT

HFRWMCT
(3) <130

LAXSMBS
(4) >0

LGBOWV?7
(3) <6

|

(6) < -9.0

FONTS84
) 26

e VBGBNDA e, | BGBUD —_——

150> >0 (6) 150> > 90
L

Figure 5.12

(HOTE: The number encircled, e (6), indicates predicted value if data
are not available for further splits.)

Where: UPLAZMY

SANKMCT
HFRIMCT
FONTS80
LAXBMD4
VBGBHDG
LGBOWV 7

30-Hour Winter SO2 Prediction for Fontana, R

-« Tomorrow's predicted ozone at UPLA {PPHM)

7 a.m. pressure gradient between SAN-WMC (mb)

7 a.m. prassure gradient between MFR-WMC {mb) - '
Today's predicted (8-11 a.m.) S0, max at FONT {PPHM)
¥ a.m. 850 mb temp-surface temp at LAX ('C)

850 mb wind direction at VBG 00Z

7 a.m. surface wind velocity at LGB {MPH)

2 - 9.50

9
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(2) Lennox
Summer: < LENXSMI1

-0.00045 LAXIBH4 + 0.12_ VBGSHTI
+0.18 LENXSMY - 0.083 LAX8TM4

-0.047 SuMgpe7 - 62.1
0.13 VBG5HTT - 0.00016 LAXTBH4 - 539.6

Winter: LENXSM]

(3) Basin Max
Summer: BASNSMI

-0.0061 LAX1BH4 + 0.11 VBGSHTT °
+0.12 BASNSMY + 0.12 VBG5HCI
- 0.058 VMWSHT1 - 53.8

Winter: BASNSM1 = 0.16 VBGSHT1 - 0.00026 LAX1BH4 - 84.2

5.4.2 Method Development
Three basic techniques were attempted to produce a 30-hour forecast:

decision trees, stepwise multiple regression and the perfect prog.

The perfect prog method used for both Lennox and the Basin Max relates
values of meteorological variables forecast for tomorrow by the numerical
simulation models of the National Weather Service to va1ugs of 502. Thus,
this SO_2 prediction relies upon accurate numerical meteorological fore-
casting.

The 502 prediction algorithms generally displayed poor 30-hour
predicticn accuracy, even worse than ciimatology. As a result, extensive
30-hour forecast algorithm development was 1imited. It is worth noting that
the upper air progs used in the perfect prog procedure were not as
effective as for oxidants. This indicates that large-scale features
cannot effectively be used for long-term 502 prediction.

5.4.3 Validation of the 30-Hour Algorithms

The verification scores of both the dependent and independent data sets
are given in Table 5.4. Note that climatology is a good predictor for the
30-hour prediction. Using the best algorithms, the degree of improvement
over climatology is small. For Lennox,in fact, the verification of the new
algorithm on the dependent data was not as good as climatology. Thus, it
can reasonably be concluded that the nature of SO2 build-up is such that
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Table 5.4 Qverall Prediction Rating for 30-hr Predictions

(May - Oct)
RATING =
Number of T T PERFECT
Predictions Method ¢ -10E+ 2+ C + P =RATING RATING
PERFECT 100 0 100 100 25 = 325, '
Summer 1974 - 1976
329 Fontana-persistence 84 26 61 0 25 - 144 .443
543 Lennox-persistence 9] X 19 71 0 25 -168 517
557 Basin-Max-persistence 73 28 -. 55 0 25 125 .385
152 Fontana (algorithm) 91 19 - 81 42 25 - 220 .677
453 Lennox (algorithm) 78 22 55 22 25 158 .468
456 Basin-Max (algorithm) 76 25 59 28 25 163 .501
549 Climatology-Fontana 86 30 50 37 25 168 .517
- 549 Climatology-Lennox 93 20 70 40 25 208 .640
Summer 1977

141 Fontana-persistence 86 32 50 0 25 129 .397
137 Fontana {(algorithm) 81 34 56 19 25 147 .452
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the meteorological conditions necessary to predict daily -concentration
changes are identifiable up to 24-hours in advance. Beyond that time,
climatology is the most convenient predictor.

5.5 LOS ALAMITOS CASE STUDY

The major goal of the Los Alamitos case study was to determine the
effect of emissions on the ability to forecast ambient 502 levels. It
was hypothesized that with both emissions and selected meteorological data,
accurate prediction should be possible.

Data from the Haynes and Los Alamitos power plants were compiled for
the three years of the analysis (1974-1976). The data consisted of the
sum of the combined daily tonnage of SO2 emissions emitted from the two
power plants (Haynes-Alamitos 502 emissions today--HAALSE@). Figures 5.13
through 5.15 show daily fluctuations in emissions for the study period.

Linear Regression of SO ( LSALSM@) vs. HAALSED
To relate the effects of HAALSEQ same-day SO2 levels mon1tored at
Los Alamitos, a series of regressions was performed. The initial analysis,

a simple linear regression data, showed no strong linear relationship between
emissions and SOZ‘ For 477 summer cases, the correlation coefficient

between the two variables was R = 0.33, with a standard error of 3.9 pphm.

A graphical display of the basic relationship is shown in a scatterplot
(Figure 5.16) where 502 data monitored at Los Alamitcs are plotted versus
HAALSEO. From the figure it can be seen that there exists a definite
maximum potential for the formation of SDZ’ given a distinct emissions

level. Although there is a threshold potential for 302 formation, a number
of different SO2 concentrations can exist for each emissions level.

Multiple Regression of SO2 vs. Meteorology

Stepwise multiple regression, using meteorology alone, produced an
improved explanation of the existing SO2 levels. Eguations were developed
for both seasons and were stratified by surface (LAXIBH4 = 110) and non-
surface (LAX1BH4 > 110) inversions. Table 5.5 gives summary resuits of
the equations, including the correlation coefficient, number of cases,
percent variance explained, and the key variables in the equation.



[t

[ar==cl20]

=

FEruT

=

[ S

173

N

1lll]llll|llll|Illl||llllll]l|ll|i|ll|l|f||T|ll-lIl

llll[[HHIltll[lllllllll}llllllli||Hlll[Hlllllilllll[!lll\IIH]HH

@hT ger o agt g8 a8 Bh @c

(AYQ/%0S SNOL) 3STWVH

=

JULY 1
74
2 From Haynes-Alamitos (HAALSE@) Power Plants

Daily Emissions of SO
TON-SQ2/Day) for 1974

(

JAN 1.

Figure 5,13



174

)
—
\
2
~
=
]
Lo

—_—

Frrrpri Illl FTT |Il| [T T ‘1|| I‘Il FT] III| FTTTTTT l|

PTTT T pa e e ey v Ty T Ty Ty oI Tr e et Ty eI
[T T T T TTITTTTTTT T TT7T]

anT ac1 aat 48 a8 Ah
(A¥0/°0S SNOL) gasTywu

2c

=3

JULY 1

75
Daily Emissions of SO2 From Haynes-Alamitos (HAALSE@) Power Plants

(TONS - SOZ/DAY) for 1975

JAN. 1

Figure 5, 14



175

_____p____:_._______________:____.______;_:______

9461 403 (Keq/ps-suoy)
ma:n_m;mzomaumés‘:mS_EmE;mm:zm:Eo;.,_om%cmzo_mﬂsma:moﬁ.mm;:mr_

9/61
L Ane L Nyp

il!ll]!H[}llll[llllllllltiﬂT[llII|llll!illlillllllltllllll‘HH[H]I

br=omrn [Eo ] besm—n ey (I (B c_:m -f v Lemmm—— [T N

@c

8%

@s

28

@aT

el

@ht

|

(Ava/%os-NoL) B3STvvH

Loy



I
1
1
¥

176

00

Pd gy e P ek P et A 2 bt P ] et bt by e e

@ o by b o g o et bk by ok e bt et P el e ped b bt s e e bedd b dem b b et Pt bk ey

(WHdd) OWSTYSYT pue (AVG/20S-SNOL) B3STYYH 40 30[dusizeds  9L'G aunbj

:ﬁ_\mommzctsuﬂéz _
st gatsgelt gacazt ou°sul U 06 DIVRE Y] 0o 07 gacay 0o~ us uutsl 0y
N I S e B et bbbl LRl bttt Snbehuinl Akl kel Rt
13 ¥] § Safe%22¢ fxv 2 22 v v xx 2 ox 2y »22 ¥ ]
1 1
. 2 ? w8l 2 % ¢ 2l x5 0w yZx xFexl  YEZ wxlxy x & xlxxld ¥ ¥
1 1
¥ - vl xlxx ¥ 2 v e ¥ v 22 w2%1Ix2% xv x% k22 ¥vv ¥ ¥y
i 1
] « ¥x I wx wrxZy 2 Pxlwyx 2 2 2 2 wx wilwxw ¥ OXXEEN ¥ v ¥ [
I I
. ¥ 12 92 ¥ ¥ » 2 2 ¥ ¥x» vy Ty yvw Crvwr ¥
I

¥ xevxl | v ¢ ru« 28 el x ¢c
H ¥ ¥ vevx 2 v w3 ¥ ¥ Ix

¥ iw r xxZy 285 2 wvw v »
¥ ¥ "¢ 2 ¥x  x x¥ I'4 2Z

1o o o o G 2 0 o B et P 0 % A 0 A At A P P o b 4 R T = IS WY e o A e > P s 4 P > T VB Y 7 (% P W A W TS T S RS T e Sm LM Th Mmoo s pmam S S S

v vy LI » ¥y ¢ ¥ » 1 .

(4] ¥

et g Pt N et e s

-
-*
-

e

* v 2 rexly ¥

P [¥4 Z xx r x

w
™
i
il
)

£ 3

g Pt bt b Pt g P um Pt et =t X
-
x

R il R B o T B
Q
-
i

o

1 (2]

. on = o 4o 4 o S o o om0 A 4 L L S A A 8 O B S o o 4 6 A e D N e 8 7 = 0 e S o e e G A8 L G T TSN Mmoo e eSS S S

Pt et e e b M g bt Ff Tt T by P bk e Pt ey
x
[ el el e R B R B T

I

+|lll+l|ll+llll+|lll¢ll|l+!lll?ll|I+|Ill+llll+l!ll+lll|—lllf+!lll¢l!ll+llll+llll+||ll+l|l|+lll|+ll||+

u

+

—t b

@ e ot et P de e et e PeS e b P b Pt o bt Bt St Pt sk bl St et P i e b et R e b e S R e g e et P e et e e e e

uo° o

nste

00*

el

0s* !

oorol

0atsi

gs= 4l

ou° 0l

us-ze

vyt se

—

4) os

(



177

% SY3IH10

s ¢JHSNYS

% £dadan

#l PHLOXVT

sl SHYLNYS

%2 PHaLxy

%€ LZARII oLl =

%€ £9dAnns yHALXY

%G LAMBXY 991 L'e %02 - b ADJULM

2y SY3HLO

al YHALXVY

%L YWLAXY

%2 LZAGE91

%€ ZHYLNYS oLl <

%S £9dpnnS PHALXY

ZEl LAMDXY LGl G'¢ %62 ¥s* J9JULM

%S SYIHL0

A PHYLXYT

%e £2d1USa

A% FOWBXY

%S L4apa9 ’

A1 PHL16XYT oLl =

#Ll L9dpWNS PHALXYT

%ee (HdIXv1  9¢ 'Y %49 17 Jaluing

%2 SY3HL0

sl 101XV

%2 £4apg91

%l PHLOXYT

%e YWLGEXY oLL <

L LZNDET YHALXY

%9l PHYLXYT e 2t %€ A Jaumuing
pauge|dx3 sa|qejJep s9se] JO (wydd) aouuy paujeidx3 JU9}3}4430) uoseas
aoueLaep K9y JAaquiny phepuels aouelJep TR TENRTE)

Le3oy

(ALup ABO[040913W) Lo
OWSTYST BuL3oLpasd Suoissaubay 4og sILISEIeIS antjededwo) §°G @1qel o

L=y [ Ly [ B L _i:on e -



178

Separate regressions were generated for days with and without
surface-based inversions, and for the two seasons. For the summer surface
inversion category (5% of all cases), the regression equation accurately
predicted the higher values of SOZ' The equations for the 3 remaining
categories (95% of all cases), with correlation coefficients ranging
from 0.42 to 0.55, were not accurate enough to use as predictofs.

Multiple Regression of 502 vs. Emissions and Meteoroiogy

To combine the effects of emissions and meteorology, additicnal
regressions were generated using both the original data set and HAALSE®.
Summer regressions were developed for each of the categories (see Table 5.6).
The new equation set predicted only slightly better than the equations
using metecrology alone.

HRALSE@ placed the third best predictor for the summer non-surface-based
inversion equation, explaining an additional 4% of the total variance. In
the surface-based inversion set HAALSEQ contributed only an insignificant
0.17% to the total variance explained.

For the winter regressions (approximately 48% of the total cases)
HAALSEP was not flagged as a potential predictor. In both algorithms,
HAALSE@ contributed less than 1% to the total variance explained.

Scatterplot Analysis

Summer season scatterplots of several meteorclogical variables suggested
that many of the potential predictors were not linearly related to SOZ'
(See Figures 5.17 through 5.21.) Also shown are the individual correlation
coefficients and the standard error. The large standard error and the
scatterplots themselves illustrate the Targe variance in the 502 distribu-
tion compared to the best fit regression 1ine. In all of the scatterplots
the higher values of 502 (> 10 pphm) are not adequately represented by the
straight line fit. Also, in many of the figures, the actual regression
best fit is not clearly shown by the shape of the 502 distribution.
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Decision Tree Analysis

To account for contributions to a prediction algorithm from non-linearly
related variables, especially wind direction, decision tree analysis was
implemented. The use of the decision tree allowed the inclusion of local
wind parameters for LGB and LAX (7 AM and 4 AM) as well as upper air
wind flow for Vandenburg.

The new set of predictors included persistence, wind directions and
emissions data to complement the basic set of meteorological variables.

Two different AID algorithms were produced; summer, with LAX1BH4 # 110
including the entire variable set, and winter using just meteorology alone.
The summer LSAL decision tree (Figure 5.22) had a correlation coefficient
of 0.70 (330 cases) with HAALSED emissions explaining a total of 3.4% of the
variance (both splits). The role of "in hand" emissions data in prediction
was far overshadowed by the contributions of persistence, explaining 14.5%
of the variance. The remaining 30.6% of the variance was explained by
meteorology and oxidant forecasts. The importance of persistence compared -
to emissions is evident through the splitting order, where the decision

tree split 1st and 6th on persistence and 12th and 13th on HAALSEJ.

" To estimate the potential of a predictive algorithm notrinCTUding
emissions data, the winter decision tree for Los Alamitos was developed
without either 502 emissions or persistence. (See Figure 5.23.) Using
meteorological variables only the tree achieved a correlation coefficient
of .66 for all (310) winter cases. Without emissions and persistence the
tree predicted more accurately than the winter regression equation including
both of these variables. (The regression equation with all base heights
achieved a correlation coefficient of .50.)

Summar

From this series of analyses several conclusions can be made. The
amount of emissions establishes a ceiling for potential SO2 build-up for
LSAL. 502 prediction based solely upon the input of meteorology explained
a substantial percentage of the variance in the observed 502 at Los Alamitos.
The inclusion of emissions data did not necessarily improve forecast
capabilities significantly enough to justify the need for a daily emissions
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SO2 Prediction

LSALSMY ——— DSRTPC7 —— LAX9TMA — L SALSMY 13
>5 <2.0 > 15 31f
LAXIBCA _ 8
< §1500
LsALZvg 8
> 10
- 4
HAALSER 7
> 80
| s
LGagWD7 8
360 > 3 300
l 3
LSALz¥p€ S0COPC7 9
> 10 <-2,0
i
HAALSER 6
> 60
Leggln? 6
%05 2300
LAXIDT4 = LGBHWV4 6
< 4 <2 i 3
2

Where: LSALSMY One hour max SO» at LSAL yesterday (PPHM)

DSRTPC? - Avg. 7 a.m. 24-hour pressure changes at I DAG, LAS, TRM, YUM (mb)
LAX9TM4 - 7 a.m. 950 mb Temp at LAX (°C)

LAXIBCA - 7 a.m. inersion thickness at LAX (ft)

LSALZMB - Today's 1-hour max oxidant at LSAL (PPHM)

HAALSEZ - Todav's Haynes and LSAL SO, emissions (tons/day)

LGBPWD7 - 7 a.m. surface wind direction at LGB

SOCQPC7 - Avg. 7 a.m. 24-hour pressure changes at I LAX, SAN (mb)

LGEBPWV4 - 4 a.m. surface wind speed at LGB (MPH)

Figure 5.22 Same Day Summer SO2 Decision Tree Prediction Algorithm for Los Alamitos
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$0, Prediction

SUMBPGT ______ LAXBINT LAXIDT4
<15.0 < 2 >6
i
OAKSHT2 SANWMCT == MFRUWMC?
> 5600 >3.0 < I.Ol
VBG7RH2 VBGAWD2 _____MFRWMC? . SUMPPG7 ____ LGBOvVZA 1
< 50 0-150 <0 <10.0 >10.0
I I
LAXIBCI
< -15|00
) LAXIBC3
> llsoo
Nhere: SUMSPG7 - I 7 a.m. pressure gradients: LAX-DAG, SAN-LAS, SDB-VCV (mb)
LAXGWV7 - 7 a.m. surface wind velocity at LAX (MPH)
LAXIDTA - 7 a.m. LAX inversion Top Temp - Base Temp (°C)
OAKSHT2 -~ 500 mb heights at OAK 12Z (10 m)
SARKMC7 - 7 a.m. pressure gradient between SAN-WMC
HFRWHC7 - 7 a.m. pressure gradient between MFR-HMC
VBG7RH2 -~ 700 mb relative humidity at VBG 12 Z (mb)
VBGBHD2 - 850 mb wind direction at VBG 12 Z (mb)
LGBOVZ4 - 4 a.m. surface visibility at LGB (miles) B
LAXIBC3 -~ 7 a.m. LAX 24-hr. inversion base height change (ft)

Figure 5.23 Same Day Winter SO2 Decision Tree Prediction Algorithm for Los Alamitos
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projection. In the summer, emissions do play a 1imited role in the predic-
tion algorithm, yet the inclusion of emissions only repiaces one potential

predictor with another. When included, persistence was usually a dominant

factor in the algorithms. It is possible that persistence and
emissions are so highly correlated that there is no advantage to
including both in the analysis.
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CHAPTER 6
ESTIMATES FOR MISSING DATA

In order for prediction algorithms to be utilized, input data must be
available. On any given day, key meteorological data may not be available
due to several factors: .

(1) 1instrumentation problems at the originating site
(2) communications problems (teletype or facsimile outages,
1ine garbling, etc)

When such conditions occur, it is especially important to estimate the
input variables so that the predictions of pollutant concentrations can
still be obtained objectively. Due to the large number of variables used
in the complete set of prediction algorithms, and due to the seasonality
factors involved in many of the meteorological parameters, accurate statis-
tical prediction of these variables is not possible. Instead we have app-
roached this problem in two ways: (1) a climatological summary, and (2) .
a method to estimate key LAX inversion variables. The following subsections
describe these approaches.

6.1 C]imatoTogicaI Summaries

For each of the variables in the data base, descriptive statistics
were compiled by month, indicating the mean and standard deviation, the max-
imum and minimum values, and characteristics of the distribution (skewness
and kurtosis). Data used were for the 1974-6 period. Tabular listings are
given in Appendix D.

In many cases, pa}ameters can be accurately estimated subjectively.
For example, the DOLA 24-hour algorithm uses the VBG 500 mb height. The exact
height value at VBG may be missing from the NMC 500 mb analysis, but in-
terpolation from other available sites (i.e. O0AK and SAN) can give an
accurate estimate of the needed parameter. Similarly, a teletype outage
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may cause the Toss of a scan of surface observations; however, an estimate
of the needed parameter, based on the previous hours data, can be accom-
plished quickly and accurately.

More significant problems generally occur if missing data are from
upper air parameters (not taken every hour) and with no means of inter-
polation. Also, estimates tend to be more inaccurate as the number of
hours increase between the last observed value and needed value. In these
cases, the estimates can be guided by the climatological data. Again,
using the 24-hour DOLA algorithm as an example, one of the needed parameters
is the SAN-LAS pressure gradient at 21Z (SANLAS3). Let us assume that the
last available was at 15Z (SANLAS7). Determine the departure from the
monthly normal for SANLAS7, and then apply that correction factor to the
monthly average 1isted for SANLAS3, This technique will allow for the
duirnal effects that occur in surface pressure parameters.

It is important to realize that these techniques are intended to be
a constructive guide for estimating key parameters and that thoughtful
subjective applications are likely to improve the results.

6.2 Estimating the 14Z LAX Sounding from the E1 Monte Sounding
Many of the key meteorological input variables are taken from the LAX

inversion data. Thus it is important to accurately estimate these para-
meters when such data are not readily available. In such instances, it is
convenient to obtain a best estimate of the LAX inversion profile. Using
the nearby E1 Monte (EMT) 14Z RAOB data for the years 1974-1976, multiple
regressions were run to estimate the following 14Z LAX atmospheric variables:

(1) Inversion Base Height (FT)

(2) Inversion Top Height (FT)

(3) Inversion Base Temperature (°C)

(4) Inversion Top Temperature (°C)

(5) Surface Temperature (°C)

(6) 950 mb Temperature (°C)

(7) 850 mb Temperature (°C)
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Initially, the data were grouped into three seasonal subsets: March-
May, June-October, and November-February. For each subset, regression
equations were generated for each of the seven key variables listed pre-
viously. Next, the data were re-grouped according to the E1 Monte 850 mb
temperature: < 14,0°C, 14.0-21.9°C, and > 22.0°C. Again, equations were
generated for the seven RAOB variables. A matrix was constructed for each
possible combination of the two subseté, and in each case, the regression
equation which produced the least standard error was selected. Equations
with the greatest standard error were rejected.

The remaining equations are tabulated in Table 6.1 with the corresponding
standard errors. For convenience, the matrix in Table 6.2 indicated the ap-
propriate set of equations for each combination of subset criteria.

From Tables 6.1 and 6.2, one can thus construct a reasonable estimate
of the LAX fnversion profile (RAOB) using only the available EMT RAOB data.
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T T

9

EQUATION # Se
BASE HEIGHT

(1) Hg = .48 hg - 72.4 ty + 2093 + 345

(2) Hg = .87 hy +57.2 t_ - 560 + 562

(3) Hg = .55 hg - 94 tp + 2922 + 831

(4) Hy = .16 hy + 263 t_ - 236 t; + 1332 + 1250

TOP_HEIGHT

(5) Hp .28 ho - 84.5 tg + 4028 + 595
| (6) H. = .41 hy + .47 hy + 972 + 770

(7) Hp =250 t_ - 148 t. + 2609 + 1365

BASE TEMP .

(8) Tg=.61ty+.15¢ +2.7 +1.38

(9) Ty = .44 ty - 0005 hy + .28 tg + 4.5 +1.54
(10) Tg=.53 tg+ .11 tp - .16 £ + .24 t5 + 2.3 + 1,75
(M) Tp=.37 t; - .2t +.483¢ +0.8 +2.20
(12) Tg= .33 tp + .37 tg+ 1.2 + 2.45

TOP_TEMP

(13) T = .95 t + 1.1 +1.21
(14) T = .0005 hy + .97 t; - 1.0 + 1.71
(15) Ty = .5t + .58 tg + 1.3 +2.36
(16) T, = .0008 hr + .83 t. + .31 £y - 3.9 + 2,47
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Table 6.1 LAX RAOB Predictive Equations (Continued)

EQUATION # e

SURFACE TEMP
(17) T
(18) T

g = .5t * .08ty +7.6 | +1.15

S .55_tS + .15 tp + 4.9 A + 1.42

950 mb TEMP

(19) T
(20) T

g = 94ty + 0.7 + 1,33

77 te + .16 ty + .0007 h

+ 0.1 +1.63

9 B

850 mb TEMP

(21) Tg

(22) Tg

1]

.95 to + 0.7 +1.39

B
.001 hT + .78 t - 17 tg + 3.9 . +1.33

LEGEND:
EMT, LAX

HEIGHT OF INVERSION BASE(FT)

pu o
\

= HEIGHT OF INVERSION TOP (FT)

—
]

TEMPERATURE OF INVERSION BASE (°C)
TEMPERATURE OF INVERSION TOP (°C)
SURFACE TEMPERATURE (°C)

ot
_-l
L)
!
[}

950 mb TEMPERATURE (°C)
850 mb TEMPERATURE (°C)

—_ - -
n
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Table 6.2 Matrix for Determining Appropriate Equations for
Estimating LAX 14Z RAOB Variables

EL MONTE 850 mb TEMP (°C)

< 14.0 14.0 - 21.9 > 22.0

'} E '} E V' E
A Q A Q A Q
R R R
Hy - 3 Hp = 2 Hy - 1
He - 7 He - 6 He - 5
var. | T8 - 1 Tg - 9 Ty - 8
May T - 16 Tp - 13 Tp - 13
T, - 18 T, - 18 T, - 18
Ty - 19 Tg = 19 Tg - 19
Tg - 21 Tg - 21 Tg - 22
v E v 3 % vV E
A Q A Q A Q
R R R
Hy - 4 Hy - 2 Hy = 1
He - 7 He - 6 i o= 5
gzg— Tg - 10 Ty - 9 T, - 8
T, - 14 To- 13 T, - 13
T, - 17 T, - 17 | T, - 17
Tg - 19 Tg = 19 ; Tg - 19
Tg - 21 Tg - 21 é Tg - 21
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Table 6.2 Matrix for Determining Appropriate Equa?ions for
Estimating LAX 14Z RAOB Variables (Continued)

I

v
r
n
L]
o

ey v

BIEELT 2=

— =1

< 14.0 14.0 - 21.9
vV E v E v E
A Q A Q A Q
R ‘R R
Hg - 4 Hy 2 Hy = 1
Hp = 7 Hy 6 He - 5
Nov- T, - 12 T 9 T, - 8
Feb B B B
T - 15 T, 13 T, - 13
T, - 18 T, 18 T, - 18
Ty - 20 Ty 19 Tg - 19
Tg - 21 Tq 21 Tg - 21
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CHAPTER 7
LONG-TERM TREND REVISION

Prediction algorithms developed from a three-year base period (1974~
1976) maximize the relationships between meteorology and poliutant con-
centrations. Since daily emission values are virtually impossible to
obtain on a real-time basis, it was necessary to exclude emissions from
the development of the p%ediction models. One assumes, therefore, that
emissions have remained relatively constant over the base period.

As emission control programs affect the balance of emissions of both
primary and photochemical precursor pollutants, the direct relationship
between meteorology and observed ambient pollution concentrations can change.
This can lead to systematic overpredictions at some future time (if pol-
Jutant trends are downward) or underpredictions(if trends are upward).
Rather than reconstruct new algorithms at some future time with a revised
data base, it is more feasible to develop methods of adjusting existing
- algorithms to detect and correct trend biases. Such methods should also
be relatively simple to apply, so that daily real-time prediction can
remain an efficient procedure. |

The purpose of this chapter, therefore, is to provide two simple
methods for the detection and correction of the systematic bias which may
be present in the prediction equations. The central idea of the methods
is to treat the prediction process as a black box, and make the correction
solely based upon past input (observed values) and output (predicted values).
The methods are presented in the form of a user's manual and are applied
to a test data set for illustration purposes. Finally, the two methods are
tested on two sets of real data for a comparison and are shown to be
effective in reducing the total errors of prediction.

In order to first detect a trend, usually one has to analyze the data
for an entire year and compare results o preceding years. For algorithm
correction, however, it is not appropriate to wait that long, since
adjustments based on the preceding year may already be in error in

the Tollowing year. _Conversely, short-term corrections, from only
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one day or one week of data, may not succeed since adjustments may try to
correct daily variations, rather than true trends. We have concluded that
a period of one month is the shortest time period to adequately analyze

for trend changes,without being too greatly influenced by daily variations?ﬁ&“

As an example, suppose we want to correct the predicted ozone levels i
for the current month, say July, given that we have already seen the ob-
served and the predicted valuesin June. One correction method, which has
been shown to be effective in reducing total errors when applied to the
test data (shown in Table 7.1), is given below.

METHOD 1.

1. Record the prediction errors and the predicted values for the past
month. Here an error is defined as the difference between the observed and
the predicted values. For example, the errors and the predicted values for
June can be displayed sequentially, one error followed by one predicted
value for each of the thirty days, as shown in Table 7.2.

2. Divide the range of predicted values into subintervals of equal
length, such as the intervals, O to 4.9 pphm, 5 to 9.9,...,30 to 34.9,

- and the unbounded interval from 35 and beyond.

3. Using the listing in Table 7.2, group those errors with the predicted
values falling in the same subintervals into one class. Figure 7.1 summarizes
this procedure.

4. For each row in the above table, rank the numbers from the smallest
to the largest in an ascending order, and find the median. Here the median
is defined to be:

the single middie value or
Median =

the mean of the two middle values

We shall mark it "M", e.g., if one has nine values, the 5th from either end .
will be the median. Figure 7.2 shows the ranking and the median for each
row previously shown in Figure 7.1,

Very often, a row may contain less than three values, and the median
is not well-defined. We recommend that whenever there are less than three
values in the 35-< row, combine the row with the next highest row, compute
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Table 7.1  Test Data Set (Based on Upland, 1977)

June Predicted (Observed) sequence - 28(31), 24(25), 29(22),
22(38), 28(24), 19(19), 25(17), 19(13), 17(03), 11(09), 12(13),
]2(17)5‘13(12), 09(18), 12(20), 21(23), 21{15), 19(16), 13(13),
08(15), 13(19), 22(24), 26(26), 28(26), 30(28), 27(21), 27(25),'
23(22), 31(23), 32(23).

July Predicted (Observed)sequence - 31(20), 21(20), 21(18),
15(06), 19(11), 18(27), 26(24), 31(24), 19(25), 25(14), 27(15),
22(23), 18(23), 21(28), 31(28), 35(29), 33(19), -(18),

22(11), 17(15), 23(31), 33(34), 31(22), 31(24), 28(25),

34(25), 31(23), 34(26), 33(27), 34(18), 29(20).

Table 7.2 Listing of Prediction Errors for June, 1977
Error (Predicted Value) Sequence (PPHM)

03(28), 01(24), -07(29), 16(22), -04(28), 00(19), -08(25)
-06(19), -14(17),-02(11), 01(12), 05(12), -01(13}, 09(09)
08(12), 02(21), -06(21}, -03(19}, 00(13), 07(08), 06(13]
02(22), 0a(26), -02(28), -02(30), -06(27}, -07(27), -01(23)
-08(31), -09(32).
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Predicted Values (pphm)

35+ —J

30-34 —
25-29 =
20-24 —
15-19 —
10-14 —
5- 9 —
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- Q +
(negative(positive
errors) errors)
9 g 2°
6 2 4 7 3 0
1 6 1 16 2 2
3 14 6 0
1 2|1 5 9 8
7

* Numbers shown represent the original errors in pphm.

Figure 7.1

Class Interval Grouping of Prediction Errors

Predicted Values (pphm)

35+ -
30-34 —
25-29
20-24
15-19 —
10-14 -

5- 9~

8

(negative
errors)

9 [8] 2

7 7 [611[4] 2
6 1
14 [6] [3]

2 1

0 +
(positive
arrors)

0 3
[11[2] 2 16
0
o [11[5] 6
7

8

9

Note: This table is good for the July 2 to July 31 period.

(Bracketed numbers indicate values-used to compute

median, M)

Figure 7.2

Ranked Errors by Prediction Interval
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the median, and use that median for the 35-« row. For other Tower level
rows with less than three values, assign the corresponding median the
value zero.

5. In order to make a correction for the predicted value of any one
day in the current month, compute the predicted value, say P, from the
algorithm and seek for the M value of the row to which P belongs {e.g.,
from Figure 7.2),and then compute the revised predicted value p.as P+M.
For example, suppose we are interested in the prediction of ozone level '
for July 14. From the algorithm, we get P = 28 pphm. From Figure 7.2, we
see that, for those predicted values falling between 25 and 29, the median
error is -5, Thus the revised predicted value is p = 28~-5 = 23. There-
fore we announce that the predicted value for July 14 is 23 pphm instead
of 28 pphm. Figure 7.2 would be valid for the entire month of July. For
the August prediction, we need to revise the table using the July data
on August 1. )

For those rows with M<2, no correction is necessary due to the in-
significance of the M values. )

METHOD 2

The preceding method which requires the user to adjust the error _
tables once every month, worked fairly well when applied to the test data.
Another way of using the method is to adjust the table once every half
month. Thus the user may record the prediction errors and the predicted
values for the 30 days counted either from the middle of last month or
the middle to the current month or from the beginning to the end of the
last month depending on the day on which one makes the prediction. (This
ailows for a more frequent determination of trend changes, but still
maintains a one-month record as the basis for making any adjustments.) The
rest of the procedure follows exactly the same as in Steps 2, 3, 4 of
method 1.

Using the test data as an example., suppose, on July 17, we want to
predict the ozone level for July 18. Thus we record the errors and
predicted values for the period, June 16 to July 15, and produce the
correction table shown in Figure 7.3, according to step 2 in method 7.
Since the errors from July 1 to July 15 will be included in the table from
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June 15 - July 15 - 0 + M
35+ o .
30-34 — 1 9 8 7 3 2 -7
25-29 - 12 71 7 6 2 210 -6
20-24 - 6 5 T 11T 2 2 7/|o
15-19 = g 85 & 9 0
10-14 - 310 6 7 3
5- 9 —
0
Juty 1 = July 31 - 0+ ' M
35+ -
30-34 3 -8
25-29 4 76 8 8 8 9 7 97411 8 7 T -8
20-24 - 7 31211 2 -6
15-19 - 11 5 1 17 8 0
10-14 4 Z 9 8 5 6 9 0
5- 9 -
0

Note: Bars indicate values to be used in subsequent 1isting.

Figure 7.3 Semi-Monthiy Ranking of Prediction Errors
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July 1 to July 30, which, in turn, will be used for the prediction of
ozone level from Aug. 2 to Aug. 16, we mark them by a bar,meaning that they
will be used again. The table is good for the correction of predictions
from July 17 to August 1. For the prediction period of August 2 to
August 16,Figure 7.3 would be readjusted by recording the 15 numbers which
are marked in the previous table, and adding 15 new numbers. The 15 newly
added numbers, again, are marked by bars meaning that they will be used
in the construction of the next table. The result is shown in the bottom
half of Figure 7.3. '
The above two methods together with a method for detecting
trends will now be applied to two sets of predicted 1-hour daily max imum
ozone levels in UPLA,covering the period from June 1 thorugh October 31,
1977. The results will be compared with the AQMD observed levels for the
same period.
Let an error e be defined as thg difference between the observed and

the predicted values. Let sse = & e;

correction methods will be'tested]using sse as a measure of performance.

be the sum of sguared errors. Three -

Correction Method 1 - Correct the predicted value according to the
median of the errors of the previous calendar month’s predictions of that
parameter.

Correction Method 2 - Correct the predicted value according to the
median of the errors of the previous 30 days' predictions of that parameter.
The median 1is updated every half month.

Correction Method 3 - Correct the predicted value according to the
median of the errors for a given observed level in the previous 30 days'

forecasting, again adjusting the median once every half month.
Let

Sge(i) = sum of squared errors after correction using method i,
where i = 1,2, and 3.

(sse-sﬁe(i))

ri% = x 100% = percent of total errors

sse
reduced by using method i.

Results are shown in Table 7.3.
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Table 7.3 Test Result

Test Set
No. 1 sse s§e(]) r(1)% s§e(2) r(z)% s§e(3) r(s)%
Jdune 0.0705
‘July 0.i663 0.1317 20.8% 0.1050 36.8% 0.0981 41.0%
August 0.2399  0.1561 34.9%2 = 0.1784 25.6% 0.2053 14.4%
Sept.* 0.1298 0.0936 27.8% 0.0896 30.9% 0.1274 1.8%
Oct. 0.1279 0.1081 15.4% 0.1115 12.8% 0.1163 9.0%
Test Set
No. 2
June 0.1180
July 0.1914 0.0997 47 .9% 0.0999 47.8% 0.1952 -1.9%
August 0.2668 0.1972 26.0% 0.1896 28.9% 0.2626 1.5%
Sept. 0.1572  0.1273  19.2%  0.1654  16.22%

" Oct. 0.1461  0.1469 -g.547  No Cor-

.rection. ..

*

Only 3 weeks' data available.
*%

From the tables covering the period from June 1 through August 31,

we observed that the M values for rows below 0.25 ppm were zero most of

the time.

for any prediction value below 0.25 ppm.

Thus for September, we decided that no correction was needed
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Intuitively, Method 3 seems reasonable since the error distribution:
of a prediction algorithm which systematically underpredicts (or over-
predicts) the pollutant level should present a positive median (or nega-
tive median). Accordingly the median should be subtracted (or added)
from the predicted value assumption from the algorithm. Unfortunately,
when tested on real data, this "reasonable" method does not work. Never-
theless, the test result of .this method provides one with an impression
on the relative merit of Method 1 and'Methdd 2.

From the test result, one sees that, overall, Method 1 and 2 achieve
at least 20% of reduction in total errors. During October the original
algorithm performs better (smaller sse value) than during the rest of
months in the set, resulting in lower reductions in total error by Method
1 and Method 2.

After the application of Methods 1 and 2 to the test sets, it can be
seen that, for small predicted values (say below 0.25 ppm), no correction
is necessary. Thus one only needs to correct large predicted values
“according to the table.



